Agenda

• STEMI Network Study Introduction by Atif Adam
• Perseus Introduction and Demonstration by Anton Ivanov
ST-elevation myocardial infarction (STEMI)

Network Study

Dr Mirza Khan Fellow in Cardiovascular Outcomes Research, University of Missouri-Kansas City, Saint Luke’s Mid America Heart Institute
Milou Brand Senior Data Scientist, OMOP, IQVIA
Atif Adam Associate Director of Epidemiology, OMOP, IQVIA
Background

ST-elevation myocardial infarction (STEMI)

- In 2019, an estimated 17.9 million people died from CVDs, which is 32% of all global deaths. Of these deaths, 85% are due to acute myocardial infarction (AMI).
- In United States alone, 1 American will suffer an AMI every 40 secs: estimated annual incidences of new and recurrent MI events are 550,000 and 200,000 events, respectively (1).

In the 4th Universal Definition of Myocardial Infarction (UDMI) defines acute ST-elevation myocardial infarction (STEMI) requires:

- a rise and/or fall of cardiac troponin (cTn) values and clinical evidence of ischemia (i.e., symptoms, ECG changes, supportive ECG or other imaging findings, or evidence of coronary thrombus). The underlying etiology is plaque disruption with coronary atherothrombosis (2, 3, 4).

 - Acute STEMI can manifest as:
 - hyperacute T-wave changes
 - true posterior MI
 - multi-lead ST depression with coexistent ST elevation in lead aVR
 - characteristic diagnostic criteria in the setting of left bundle branch block

Given the acuity and “need for speed” in treating acute STEMI cases, accurate and scalable generalizable identification, characterization, and current incidence of STEMI in multi-country real-world data has many benefits.

For example, informing on resource allocation, campaigns to improve heart attack recognition, cardiovascular health, and risk factor modification, etc.

This comprehensive study aims to understand STEMI patients’ characteristics and identify the incidence rates across multiple real-world data datasets.

Research questions:
• To understand the patients’ characteristics of acute STEMI patients
• To understand incidence rates of acute STEMI patients

Study design

• **Design**: This will be a retrospective cohort study of patients diagnosed with acute STEMI.

• **Data sources** can be administrative claims, registry, or electronic health records (EHR) data mapped to the OMOP CDM across the OHDSI network.

• **The primary study population** will consist of adult patients with an acute STEMI diagnosis identified in the data sources.

• **The overall study period** will span from January 1, 2016, up to the most recent data available for the given data sources.
Outline of cohort design

Acute STEMI

Start of study period (1st January 2016)

Min. 365 days prior observation

Age ≥ 18

Day 0 – index date
(1st acute (primary) acute ST segment elevation diagnosis in patient’s history)

End of the study period (Latest data available)

Inclusion criteria:
- Inpatient visit at index date (same visit)
- Echocardiogram (ECG) at index date (same visit)
- Catheterization with or without stent placement at index date (same visit)

Exclusion criteria:
- History of acute ST segment elevation MI diagnosis any time prior to index date
- Diagnosis of non-ST segment elevation MI or unstable angina co-occurrent at index date
Data analysis

Strategus

- The package uses the OHDSI Strategus framework for execution, previously been used for HowOften and SOS Challenge within the OHDSI community.

- The Strategus package includes the CohortDiagnostics module:
 - To identify features and calculate the incidence rates of patients in the STEMI cohort.
 - Features will be extracted from the 365-day observation prior to cohort entry and will include variables such as demographic data (sex, age group, race, ethnicity), prior conditions, drug exposures, procedures, measurements, observations, and risk scores (e.g., Charlson comorbidity index, DCSI, CHADS2VASC score).
 - Incidence rates will be calculated for the STEMI cohort. The rate is calculated the number of new STEMI cases per 1,000 person-years (PY) of the total patients at risk of getting exposed each calendar year.
Preliminary timelines

Spread the word

If you are interested to join, please let us know!
https://forums.ohdsi.org/t/join-our-cvd-ohdsi-network-study-on-acute-stemi/21258

- **Find interested data partners**
 - March 2024

- **Confirmed data partners**
 - April 2024

- **Interpret results**
 - May - June 2024

- **Manuscript drafting and writing**
 - July – September 2024

- **April - May 2024**
 - Data partners run analytical package*

- **June 2024**
 - Submit abstract draft OHDSI global symposium

Obtain IRB approvals
Thanks,
any questions?
“Perseus”: Design and run your own ETL to CDM
Anton Ivanov, MS, Samsur Sergey, MS, Alexander Efimov, MS, Maxim Drachinsky, MS, Dobolova Maria, MS, Matvey Chudakov, MS,
Karpushina Anna, MS, Semenov Artem, MS
Arcadia Inc., St. Petersburg, Russia

Background

There are several open-source ETL tools designed for CDM and available for OHDSI community. Tools for code mapping and quality control provide a good starting point to design ETL process for getting CDM but ETL implementation still requires technical skills in programming languages and platforms. Presented solution addresses this need and provides a user-friendly interface for ETL implementation targeting CDM.

Methods

“Perseus” is a combination of a web-based application for ETL configuration and engine for conversion of native data into CDM, data quality check, code mapping, generating ETL document and vocabulary search.

“Perseus” has instruments for all major steps of creating an ETL.

Step 1: Scan source data

- Use White Rabbit scan report
- or scan the source data directly

Step 2: Create the Code Mappings

- Visually map raw data to CDM
- Embedded set of transformations (ETT)
- Embedded set of lookups
- Combine source tables
- Combine field into groups
- Configure conditional mappings
- Automatic era creation
- Automatic domain switching

Step 3: Design and run ETL

Step 4: Quality Control

- Integrated Data Quality Dashboard

Conclusions

“Perseus” reduces the time spent on manual processes such as writing code and mapping source data to target systems. The configuring and running ETLs with “Perseus” makes it repeatable, shareable and saves time.

References:
5. ORP - https://github.com/OHDSI/ORP
6. CDM Builder - https://github.com/OHDSI/CDMBuilder

Contact: info@softwarecountry.com
Thank you!