April Olympians: What We Learned & How We Can Use It

OHDSI Community Call
April 30, 2024 • 11 am ET
Upcoming Community Calls

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 30</td>
<td>April Olympians Update</td>
</tr>
<tr>
<td>May 7</td>
<td>DevCon 2024 Review</td>
</tr>
<tr>
<td>May 14</td>
<td>10-Minute Tutorials</td>
</tr>
<tr>
<td>May 21</td>
<td>Open Studies in the OHDSI Community</td>
</tr>
<tr>
<td>May 28</td>
<td>Collaborator Showcase Brainstorm</td>
</tr>
<tr>
<td>June 4</td>
<td>NO CALL – EUROPEAN SYMPOSIUM</td>
</tr>
<tr>
<td>June 11</td>
<td>European Symposium Review</td>
</tr>
<tr>
<td>June 18</td>
<td>Application of LLMs In Evidence Generation Process</td>
</tr>
<tr>
<td>June 25</td>
<td>Recent OHDSI Publications</td>
</tr>
</tbody>
</table>
Three Stages of The Journey

Where Have We Been?
Where Are We Now?
Where Are We Going?
Congratulations to the team of Martin Baumgartner, Karl Kreiner, Aaron Lauschensky, Bernhard Jammerbund, Klaus Donsa, Dieter Hayn, Fabian Wiesmüller, Lea Demelius, Robert Modre-Osprian, Sabrina Neururer, Gerald Slamanig, Sarah Prantl, Luca Brunelli, Bernhard Pfeifer, Gerhard Pölzl, and Günter Schreier on the publication of Health data space nodes for privacy-preserving linkage of medical data to support collaborative secondary analyses in Frontiers in Medicine.
OHDSI Shoutouts!

OHDSI Shoutouts!

Congratulations to the team of Markus Falgenhauer, Aaron Lauschensky, Karl Kreiner, Stefan Beyer, Kristina Reiter, Andreas Ziegl, Robert Modre-Osprian, Bernhard Pfeifer, Sabrina Neururer, Susanne Krestan, Hanna Wagner, Andreas Huber, Sandra Plaikner, Sarah Kupfelwieser, Martin Widschwendter, and Günter Schreier on the publication of **Towards an Electronic Health Prevention Record Based on HL7 FHIR and the OMOP Common Data Model** in *Volume 313 of Studies in Health Technology and Informatics*.
OHDSI Shoutouts!

Congratulations to the team of Evgeniy Krastev, Emanuil Markov, Simeon Abanos, Ralitsa Krasteva, and Dimitar Tcharakitchiev on the publication of "Towards an Electronic Health Prevention Record Based on HL7 FHIR and the OMOP Common Data Model in Volume 313 of Studies in Health Technology and Informatics."
Three Stages of The Journey

Where Have We Been?
Where Are We Now?
Where Are We Going?
Upcoming Workgroup Calls

<table>
<thead>
<tr>
<th>Date</th>
<th>Time (ET)</th>
<th>Meeting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday</td>
<td>12 pm</td>
<td>Common Data Model Vocabulary Subgroup</td>
</tr>
<tr>
<td>Wednesday</td>
<td>8 am</td>
<td>Psychiatry</td>
</tr>
<tr>
<td>Wednesday</td>
<td>3 pm</td>
<td>Joint Vulcan/OHDSI Meeting</td>
</tr>
<tr>
<td>Wednesday</td>
<td>7 pm</td>
<td>Medical Imaging</td>
</tr>
<tr>
<td>Thursday</td>
<td>9:30 am</td>
<td>Themis</td>
</tr>
<tr>
<td>Thursday</td>
<td>11 am</td>
<td>Industry</td>
</tr>
<tr>
<td>Thursday</td>
<td>1 pm</td>
<td>OMOP CDM Vocabulary/Development Subgroup</td>
</tr>
<tr>
<td>Thursday</td>
<td>7 pm</td>
<td>Dentistry</td>
</tr>
<tr>
<td>Friday</td>
<td>10 am</td>
<td>GIS-Geographic Information System</td>
</tr>
<tr>
<td>Friday</td>
<td>11:30 am</td>
<td>Steering Group</td>
</tr>
<tr>
<td>Monday</td>
<td>9 am</td>
<td>Vaccine Vocabulary</td>
</tr>
<tr>
<td>Monday</td>
<td>10 am</td>
<td>Healthcare Systems Interest Group</td>
</tr>
<tr>
<td>Tuesday</td>
<td>9 am</td>
<td>Atlas/WebAPI</td>
</tr>
<tr>
<td>Tuesday</td>
<td>10 am</td>
<td>Registry</td>
</tr>
<tr>
<td>Tuesday</td>
<td>10 am</td>
<td>Common Data Model</td>
</tr>
</tbody>
</table>
DevCon 2024 Videos Are Posted

Morning Agenda

9:00 am – Introduction (Adam Black, Paul Nagy)

9:15 am – Developers Panel and Lightning Talks (Katy Sadowski)
 • OHDSI/OMOP – The hard way is the easy way! (Vishnu V Chandrabalan)
 • Moving OMOP to the Cloud With DBT and Snowflake (Roger Carlson)
 • Use cases for ORMs in OMOP (Georgina Kennedy)
 • Carrot: code-free OMOP ETL without full data access (Sam Cox)
 • Rabbit-in-a-blender - an ETL pipeline to transform your EMR data into OMOP (Pieter-jan Lammertyn)

10:45 am – Darwin EU® Developers Update (Adam Black)
 • CDMConnector, PatientProfiles, CohortCharacteristics, CohortSurvival

12:00 pm – Break

Afternoon Agenda

12:30 pm – OHDSI Ecosystem Updates
 • TAB Update (Frank DeFalco)
 • Strategus Update (Anthony Sena)
 • Broadsea Update (Lee Evans)
 • Kheiron Updates (Paul Nagy)

1:15 pm – JACKALOPE PLUS The Power of ML for Healthcare Data Mapping & Management (Denys Kaduk)

2:00 pm - An Introduction to Knowledge Graphs using PheKnowLator and OMOP2OBO with Example Applications in Drug Surveillance and Computational Phenotyping (Tiffany Callahan)
#OHDSI2024 Registration Is Open!

Registration is now OPEN for the 2024 OHDSI Global Symposium, which will be held Oct. 22-24 at the Hyatt Regency Hotel in New Brunswick, N.J., USA.

Tuesday: Tutorials
Wednesday: Plenary/Showcase
Thursday: Workgroup Activities

[ohdsi.org/OHDSI2024]
#OHDSI2024 Collaborator Showcase

Submissions are now being accepted for the 2024 Global Symposium Collaborator Showcase.

All submissions are due by 8 pm ET on Friday, June 21.

Notification of acceptance will be made by Tuesday, Aug. 20.

[ohdsi.org/OHDSI2024]
Maternal Health Data Science Fellowship

This program is designed to empower clinical investigators to leverage emerging technologies for improved maternal and neonatal care while reducing morbidity and mortality.

Three main components of this program:

1) **Career Development** (create evidence, leverage data models, build skills on network studies)

2) **Practice** (design effective observational research protocols, master tools, write papers/grants)

3) **Networking** (build relationships with mentors, learners, coordinate with global OHDSI collaborators)

Application deadline: May 15

Want to build your career? Generate reproducible evidence by leading multi-institutional studies!

Learn more & apply!
RWE Workshop at AIME24: Call for Submissions!

Workshop: **AI for Reliable and Equitable Real-World Evidence Generation in Medicine**

https://medicine.utah.edu/dbmi/aime/ai-reliable

Organizing Committee
- Linying Zhang
- Adam Wilcox
- Yves Lussier

Scientific Program Committee
- Peter Rijnbeek
- Larry Han
- Xiaoqian Jiang
- Mattia Prosperi
- Xia Ning
- Yifan Peng

Opening Keynote
- George Hripcsak

IMPORTANT DATES
- May 31, 2024 | Submission Deadline
- June 14, 2024 | Notice of Acceptance
- July 12, 2024 | Workshop

AIME 2024

22nd International Conference on Artificial Intelligence in Medicine
Salt Lake City, Utah, USA, July 9-12

Hosted by the University of Utah
Opportunity and Challenge of Implementing the OHDSI System in Indonesia

(Dian Tri Wiyanti, Daniel C.A. Nugroho, Yudha Eri Saputra, Septi Melisa, Phan Thanh-Phuc, Nguyen Phung-Anh, Jason C. Hsu, Min-Huei Hsu)

MONDAY

Opportunity and Challenge of Implementing the OHDSI System in Indonesia

Background

Indonesia, a densely populated nation with diverse ethnicities, poses medical institutions like UKDW (Universitas Kristen Duta Wacana) that have well-established health systems. These institutions publish research utilizing Electronic Health Records (EHR), making them valuable for the OHDSI (Observational Health Data Sciences and Informatics) community. This study aims to evaluate the potential for implementing OHDSI in Indonesia, with UNIKES (Universitas Negeri Semarang) offering fresh insights. Despite the challenge, the establishment of a new health faculty presents an opportunity to integrate OHDSI into the curriculum, foster research collaborations, and develop a strong data platform. Overcoming obstacles will necessitate careful planning, resource allocation, and active involvement of stakeholders. The study assesses healthcare preparedness, technical prerequisites, market landscape, and identifies obstacles and prospects for implementation.

Methods

Table 1. Variable Comparison across Indonesia BPS, South Korea NHS-SC OMOP CDM Conversion, TMUCRD, and Indonesian Hospital Record Datasets

<table>
<thead>
<tr>
<th>Variable</th>
<th>Indonesia BPS</th>
<th>South Korea NHS-SC OMOP CDM Conversion</th>
<th>TMUCRD</th>
<th>Indonesian Hospital Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH-ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID-No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEATH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VISIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PKC DIAGNOSIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICU_Code/ICD10_Code</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indonesian Case Based Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRUG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MED_Cde</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROCEDURE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OOPS/OPU Code/OPU Code</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procedure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEVICE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEASUREMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OOHSA_Code/OTM_Hst</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBSERVATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOT_AMT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results

The dataset of the Indonesian Health Social Security Agency includes primary services (registration, outpatient procedures, and discharge procedures) and administrative tasks (planning, procurement, inventory maintenance, asset management, HR management, and financial management). It encompasses 115 variables. These variables align with the OMOP CDM categories (Persons, Death, Visit, Condition, Drug, Procedure, Device, Measurement, Observation, and Cost) and serve as classifiers for the Indonesian BPS dataset.

Conclusions

Overall, OHDSI in Indonesia brings potential and problems. The report emphasizes UKDW’s infrastructure, knowledge, and stakeholder engagement in OHDSI acceptability. With UKDW’s worldwide collaborations, UNIKES and UKDW want to implement OHDSI. Evidence-based decision-making, innovation, and thorough awareness campaigns are effective implementation techniques. OHDSI implementation is simplified by aligning national health insurance data format with OMOP CDM. Effective resource management and UNIKES training may help adapt. For OHDSI integration, UKDW’s IT and EHR competence is essential. Both UKDW and UNIKES expansion activities help support OHDSI in Indonesia. Despite minimal efficacy testing, collaboration and improvement are stressed. Integration needs careful planning, resource allocation, stakeholder participation, and problem-solving. UKDW-UNIKES collaboration improves OHDSI implementation in Indonesia.

References

HowOften: Large Scale Incidence Rate Calculation of Every Side Effect for Every Drug

(Elise Ruan, Karthik Natarajan, Ruijun Chen, Jungmi Han, Mark Velez, Taha Abdul-Basser, Edwin M. Cruz, Cindy Hsin-Yi Chen, Patrick Ryan, George Hripcsak)

Key Points
- We calculated the incidence proportion of all clinical outcomes (using SNOMED CT codes) after the first drug exposure of all drugs (using ArkRefm).
- Our calculated incidence ranges had overlap with ranges found in the literature for nine out of the ten pre-selected drug-adverse outcomes pairs.
- Additional work on phenotyping for clinical outcomes of interest is needed. Please join us for the extended HowOften workshop this Symposium!

Background
- Even without causality, knowing the incidence of a clinical condition after initiation of a drug can help guide clinical decision making.
- Currently, there is no systematic evaluation of all potential side effects for all drugs.
- Using the OMOP CDM, we use real world data to calculate the incidence of every clinical condition following initiation of every drug and published results on an internal site.

Methods
- Exposure cohorts generated for each drug ingredient in ReForm and ReForm Extension
- Outcomes cohorts generated based on disorder concepts in SNOMED CT
- Index date: date of first exposure of drug.
- Time-at-risk: 365 days post-index date
- Analysis run October 2017 on 11 databases, containing EHR and claims data which had been converted to the OMOP CDM
- Incidence proportion calculated using two methods:
 - Using only patients with data present in the database for the full time-at-risk
 - Using all patients
- Pre-selected 10 known drug-adverse outcome pairs and compared calculated incidence to literature review findings

Results
- 33,005,797 unique drug-outcome pairs from 2,072 drug concepts and 21,433 outcome concepts

Risk of cough with Lisinopril
- Using only patients with data present in the database for the full time-at-risk:
 - OES: 0.053 95% CI: 0.044 to 0.064
 - OED: 0.059 95% CI: 0.052 to 0.066
- Using all patients:
 - OES: 0.059 95% CI: 0.052 to 0.066
 - OED: 0.063 95% CI: 0.055 to 0.071

Conclusions
- Large-scale incidence rate calculations may allow for evaluation of every possible ADR without manual curation and can be beneficial to clinicians in decision making.
- The calculated incidence proportions for known adverse effects for drugs were largely well-aligned with literature.
- Sensitive or subjective conditions may be underrepresented in coding data.
- Ongoing work is needed to better define outcome cohorts, explore different time-at-risk for incidence calculation, and validate results against other sources.

Figure 1. Entry screen for the internal site prototype

Figure 2. Sample drug-condition pair with incidence proportions for each database that contained exposure cohort patients.

Figure 3. Comparison of calculated incidence rates with rates found in literature

Contact: ruan@ohdsi.org
Title: Agreement between measurement and diagnosis-based phenotype algorithms

PRESENTER: Azza Shoaibi

INTRO:
- Various types of clinical information, including diagnoses, medications, and procedures can be used to identify a specific clinical condition or event in observational data.
- Previous research indicates that the accuracy of phenotype algorithms can improve when multiple data types are incorporated.
- The aim of this paper is to compare various diagnostic phenotype algorithms with those that are based on clinical measurements across five different clinical conditions in seven separate data sources.

METHODS:
- We selected five conditions: phenotypes, myocardial infarction, congestive heart failure, pneumonia, and end-stage renal disease.
- We developed two different types of algorithms for all five conditions. Measurement-based phenotype algorithms used defined value thresholds for diagnostic markers. Diagnosis-based algorithms relied on the occurrence of at least one diagnosis.
- The cohorts were generated and evaluated across a range of data sources. The methods included 3 claims-based database, 1 general practitioner records and 1 health record (EHR). All data sources contained measurement data from outpatient and inpatient encounters with at least partial coverage.

Table 1: The overlap between the diagnosis based and measurement based phenotype algorithms by phenotype in each data source

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Database</th>
<th>n</th>
<th>n</th>
<th>n</th>
<th>n</th>
<th>n</th>
<th>n</th>
<th>n</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUSE</td>
<td>All</td>
<td>507,768</td>
<td>507,768</td>
<td>507,768</td>
<td>507,768</td>
<td>507,768</td>
<td>507,768</td>
<td>507,768</td>
<td>507,768</td>
</tr>
<tr>
<td>CUSE</td>
<td>All</td>
<td>332,175</td>
<td>332,175</td>
<td>332,175</td>
<td>332,175</td>
<td>332,175</td>
<td>332,175</td>
<td>332,175</td>
<td>332,175</td>
</tr>
<tr>
<td>CUSE</td>
<td>All</td>
<td>118,700</td>
<td>118,700</td>
<td>118,700</td>
<td>118,700</td>
<td>118,700</td>
<td>118,700</td>
<td>118,700</td>
<td>118,700</td>
</tr>
<tr>
<td>CUSE</td>
<td>All</td>
<td>69,460</td>
<td>69,460</td>
<td>69,460</td>
<td>69,460</td>
<td>69,460</td>
<td>69,460</td>
<td>69,460</td>
<td>69,460</td>
</tr>
</tbody>
</table>

METHODS cont’d:
- For each condition we report on 1. the proportion of patients identified solely by each approach.
- The proportion identified by both approaches, and the overlap of identified patients.
- In addition, we conducted a comparison of covariate distributions among individuals who met each definition to evaluate the agreement in patient characteristics.
- We utilized the Cohen’s Kappa R package to generate all results.

RESULTS:
- A substantial heterogeneity in results was observed across data source and by condition.
- Creative kinase (CK) and glomerular filtration rate (GFR) measurements identified a relatively small number of patients of myocardial infarction and end-stage renal disease respectively.
- A considerable number of patients was identified using measurement among the blood disorders.
- Among blood disorders, the characteristics of patients who met each definition were comparable (Figure 1).

DISCUSSION:
- Using measurements can significantly impact the sensitivity and specificity of the phenotype algorithm.
- We provide a framework for evaluating the utility of measurements for defining a phenotype within a given data source.

Azza Shoaibi, Gowtham Rao, Dmytro Dymshyts, Anna Ostropolets, Patrick Ryan
Comparing Patient Self-Reported Symptoms with SNOMED/ICD-10-CM Codes at Primary Care Visits

Presenter: Victor M. Castro

Introduction
- Measurement error in EHR study outcomes increases bias and compromises study validity.
- More symptoms outcomes in EHR studies rely on SNOMED and ICD-10-CM codes.
- In this study, we aim to assess the sensitivity of clinician-recorded symptoms (SNOMED and ICD-10-CM) codes compared to patient self-reports.

Methods
- Over 400K primary care patients completed a symptom screening questionnaire prior to their visits between 2019 and 2021.
- We compared symptom self-report rates to clinician-recorded symptoms in the EHR.

Results
- Of the 35 symptoms evaluated, 13 were reported by patients much higher than recorded by clinicians in the EHR (Figure 1).
- Anxiety and depression were coded by physicians at a higher than reported by patients.

Conclusions
- Symptom outcomes defined by SNOMED or ICD-10-CM codes alone are likely to have poor sensitivity.
Using the Informatics for Integrating Biology and the Bedside Platform to Query OMOP Data in the OHDSI Ecosystem

(Jeffrey G. Klann, Griffin M. Weber, Michele Morris, Michael Mendis, Diane Keogh, Shawn N. Murphy)

OHDSI Broadsea Evolution

“Broadsea is the easiest way to install (& upgrade) the OHDSI tools”

- **v1.0**: Atlas/WebAPI & RStudio Docker images on Mac/Linux/Windows
- **v2.0**: Pre-populated demo postgres database image & Traefik reverse proxy
- **v3.0**: Docker profiles for a-la-carte services, more Traefik networking, environment variable driven deployment, new OHDSI apps, build from Git

```
docker-compose --profile default up -d
```

https://github.com/OHDSI/Broadsea
Opening: Junior Research Software Engineer, Tufts

INFORMATICSS

Research Services
COVID-19 Information and Resources
Data and Safety Monitoring Board (DSMB) Program
Center for Clinical Trials (CCT)
Program Evaluation
Qualitative and Mixed Methods Service
Clinical Trial Design Labs
Dissemination and Implementation (D&I) Core
Science Communications

Overview

We participate in development of a robust institutional informatics infrastructure, enabling research teams to maintain their focus on scientific discovery and analyses rather than on data wrangling. Our infrastructure and support systems are dynamic, to keep pace with the changing and interdependent fields of health informatics, bioinformatics, statistics, and data science; expandable, to accommodate new data types and analytic methods; and scalable, to support efficient and methodologically rigorous multisite/institution research. These defining traits allow us to elucidate novel methods and operational principles, harmonize datasets, and create pipelines for data sharing and analytics.
Opening: Research Assistant, University of Oxford

Job Details

Research Assistant in Health Data Sciences
Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, Windmill Road, Oxford, OX3 7LD

We have an exciting opportunity for a Research Assistant in Health Data Sciences to join the Pharmacoe- and Device epidemiology research group led by Professor Daniel Pietro-Albambra at the Botnar Research Centre, NOORMS, University of Oxford. The NOORMS Pharmacoe- and Device epidemiology research group is involved in a number of national and international studies exploring the conditions of use (adherence, compliance, off and on-label use) of a number of licensed drugs, devices, and vaccines for the prevention and treatment of human disease in ‘real world’ (routine practice) conditions.

As a Research Assistant in Health Data Sciences you will contribute to the programming of analytical pipelines for the analysis of routinely collected data mapped to the OMOP Common Data Model. You will analyse real world data to address regulatory questions related to the prevalence/incidence of disease, use of medicines/vaccines, and the risks or benefits of medicines/vaccines or devices. You will prepare analytical packages to run a number of pro-specified analyses, contribute to wider project planning, including ideas for new research projects and gather, analyse, and present scientific data from a variety of sources.

You will hold a relevant BA or MSc degree in Mathematics, Engineering, or a related field. Knowledge of medical statistics and experience analysing large datasets, experience in biostatistics and/or health data sciences and experience in the programming of R packages are essential. Experience in propensity scores, overcoat weighting, inverse probability weighting and/or similar methods, expertise in pharmacoe or vaccine epidemiology and experience of working with electronic medical records/routinely collected data are desirable.

This is a full-time fixed-term appointment for 2 years.

The closing date for this position is 12 noon on 10 May 2024. You will be required to upload a CV and supporting statement as part of your online application.

Contact Person: HR Team, NOORMS
Contact Phone: 01865 283842
Pay Scale: STANDARD GRADE 6
Salary (£): £32,332 - £38,205 p.a
Vacancy ID: 172348
Closing Date & Time: 10-May-2024 12:00
Contact Email: hr@ndorms.ox.ac.uk

www.ohdsi.org #JoinTheJourney
Opening: Biomedical Informatics Data Scientist at Stanford

1.0 FTE Full time Day - 08 Hour R2335119 Hybrid 84866 IT RESEARCH Technology & Digital Solutions 455 Broadway,REDWOOD CITY,California

If you’re ready to be part of our legacy of hope and innovation, we encourage you to take the first step and explore our current job openings. Your best is waiting to be discovered.

Day - 08 Hour (United States of America)

This is a Stanford Health Care job.

A Brief Overview
The Biomedical Informatics Data Scientist will partner with researchers and clinicians to enable effective and efficient use of data and resources available via Stanford’s research clinical data repository (STARR) including the Electronic Health Records in the OMOP Common Data Model, radiology and cardiology imaging data and associated metadata, and new data types as they get integrated along with their databases and respective cohort query tools and interfaces e.g., OHDSI ATLAS. This individual will enable researchers to maximize their understanding, interpretation and use of these clinical and research tools for more informed and productive research, clinical trials, patient care and quality outcome projects.

Clean, extract, transform and analyze various kinds of clinical data to create analysis-ready datasets that follow the FAIR (Findable, Accessible, Interoperable and Re-useable) principles. Partner with researchers and clinicians to enable effective and efficient use of Stanford Clinical data and resources for the advancement of research and the educational mission.
The Zhang Lab at Washington University School of Medicine in St. Louis has one postdoc/senior data analyst position to work on causal machine learning and responsible AI for reliable real-world evidence generation.

- More details at https://linyingzhang.com
 - Postdoc: https://linyingzhang.com/files/Postdoc.pdf
 - Data analyst: https://linyingzhang.com/files/Analyst.pdf

- If interested, please send CV and cover letter to linyingz@wustl.edu
Director, RWE at Gilead

Director, RWE - Data Science - OHDSI

Responsibilities:
Collaborate with researchers and data scientists to understand project requirements and translate them into OHDSI-compatible solutions. Work with databases, ensuring data integrity and optimization for OHDSI-related queries and analyses. Perform data analyses in OHDSI-related tools like ATLAS. Customize and extend OHDSI tools and applications to meet specific project needs. Collaborate with cross-functional teams to troubleshoot and resolve technical issues related to OHDSI implementations. Stay informed about OHDSI community updates, best practices, and emerging trends in observational health data research. Contribute to the development and documentation of data standards and conventions within the OHDSI community.
Where Are We Going?

Any other announcements of upcoming work, events, deadlines, etc?
Three Stages of The Journey

Where Have We Been?
Where Are We Now?
Where Are We Going?
April 30: April Olympians Advancements

Clair Blacketer
Director, Observational Health Data Analytics
Janssen Research & Development

Melanie Philofsky
Senior Business Analyst and Project Manager
Odysseus Data Services, Inc.
The weekly OHDSI community call is held every Tuesday at 11 am ET.

Everybody is invited!

Links are sent out weekly and available at: ohdssi.org/community-calls