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Postmarket safety surveillance is an integral part of mass vaccination programs.
Typically relying on sequential analysis of real-world health data as they accrue,
safety surveillance is challenged by sequential multiple testing and by biases
induced by residual confounding in observational data. The current standard
approach based on the maximized sequential probability ratio test (MaxSPRT)
fails to satisfactorily address these practical challenges and it remains a rigid
framework that requires prespecification of the surveillance schedule. We
develop an alternative Bayesian surveillance procedure that addresses both
aforementioned challenges using a more flexible framework. To mitigate bias,
we jointly analyze a large set of negative control outcomes that are adverse events
with no known association with the vaccines in order to inform an empirical
bias distribution, which we then incorporate into estimating the effect of vaccine
exposure on the adverse event of interest through a Bayesian hierarchical model.
To address multiple testing and improve on flexibility, at each analysis time-
point, we update a posterior probability in favor of the alternative hypothesis that
vaccination induces higher risks of adverse events, and then use it for sequen-
tial detection of safety signals. Through an empirical evaluation using six US
observational healthcare databases covering more than 360 million patients, we
benchmark the proposed procedure against MaxSPRT on testing errors and esti-
mation accuracy, under two epidemiological designs, the historical comparator
and the self-controlled case series. We demonstrate that our procedure substan-
tially reduces Type 1 error rates, maintains high statistical power and fast signal
detection, and provides considerably more accurate estimation than MaxSPRT.
Given the extensiveness of the empirical study which yields more than
7 million sets of results, we present all results in a public R ShinyApp. As an
effort to promote open science, we provide full implementation of our method
in the open-source R package EvidenceSynthesis.
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Vaccineà adverse event??
• Post-market surveillance (clinical trials

unable to detect rare & severe events)

• Hypothesis testing:

H0: no increased risk v.s. H1: increased risk

• Sequential analysis of real-world data
as they accrue



Challenge: sequential analysis of observational data
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Sequential Hypothesis Testing

• Sequential multiplicity!
• Standard approach: MaxSPRT
• But it’s not very good…

MaxSPRT: Maximum Sequential Probability Ratio Test, by Kulldorff et al., 2011 

Need pre-fixed analysis plan
Very inconvenient!

Observational Healthcare Data

Administrative databases
(insurance claims)

Electronic health records
(EHRs)

• Bias induced by systematic error
• Hugely inflate test error
• No coherent solution for this!



Challenge: sequential analysis of observational data
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much higher!

Excess false positives
Unreliable signals!

Implication: detecting way more vaccine adverse
events than truth



Standard approach no good! Our better solution:
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• More flexible framework! • Less bias!
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• Bayesian sequential analysis
• posterior probability given accrued data
• more interpretable than p-values

No more pre-fixed analysis plan!
Very convenient!
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Joint modeling

• Analyzing negative control outcomes
• outcomes w/ null effect à empirical bias

distribution

Bias correction via joint model of
negative controls & outcome of interest



Better methodà Improved performance

• Reduced Type 1 error, higher statistical power, faster detection

5More results and details of empirical evaluation in: Bu et al. 2024, Stats in Med.
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Resources

• Team (@OHDSI):
– Thomas Falconer
– George Hripcsak
– Kristin Kostka
– David Madigan
– Jody-Ann McLeggon

– Aki Nishimura
– Patrick Ryan
– Louisa Smith
– Martijn Shuemie
– Marc Suchard

• Special acknowledgements to US FDA CBER center for support!

• Links:
– Evidence Explorer: https://data.ohdsi.org/BetterExplorer/
– EvidenceSynthesis R package: https://github.come/OHDSI/evidenceSynthesis

https://github.come/OHDSI/

