Observational Medical Outcomes Partnership

CDM EAV Section

Terminology Dictionary

CDM ER Section

Note: Technically speaking, the Terminology Dictionary fully defines both Drug and Outcome. However, OMOP Researchers may find it convenient to have these data replicated within CDM’s Entity-Relationship (ER) Section.
Observational Medical Outcomes Partnership

CDM v1

2009

2014
Observational Medical Outcomes Partnership

CDM v1

2009

CDM v2

2014
Observational Medical Outcomes Partnership

CDM v1

2009

CDM v2

CDM v3

2014
Observed Medical Outcomes Partnership

CDM v1

CDM v2

2009

CDM v3

CDM v4

2014
Observational Medical Outcomes Partnership
Observational Medical Outcomes Partnership

CDM v1

CDM v2

CDM v3

CDM v4

CDM v5.0

2009

2014
PERSON table

THIS IS OUTDATED. All documentation is now on the [github wiki. Please refer there or to the CDM working group for more information.

This table changed in version 5.1 of the OMOP CDM. The name of the field `time_of_birth` was changed to `birth_datetime`.

The Person Domain contains records that uniquely identify each patient in the source data who is time-at-risk to have clinical observations recorded within the source systems.

<table>
<thead>
<tr>
<th>Field</th>
<th>Required</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>person_id</td>
<td>Yes</td>
<td>integer</td>
<td>A unique identifier for each person.</td>
</tr>
<tr>
<td>gender_concept_id</td>
<td>Yes</td>
<td>integer</td>
<td>A foreign key that refers to an identifier in the CONCEPT table for the unique gender of the person.</td>
</tr>
<tr>
<td>year_of_birth</td>
<td>Yes</td>
<td>integer</td>
<td>The year of birth of the person. For data sources with date of birth, the year is extracted. For data sources where the year of birth is not available, the approximate year of birth is derived based on any age group categorization available.</td>
</tr>
<tr>
<td>month_of_birth</td>
<td>No</td>
<td>integer</td>
<td>The month of birth of the person. For data sources that provide the precise date of birth, the month is extracted and stored in this field.</td>
</tr>
<tr>
<td>day_of_birth</td>
<td>No</td>
<td>integer</td>
<td>The day of the month of birth of the person. For data sources that provide the precise date of birth, the day is extracted and stored in this field.</td>
</tr>
<tr>
<td>birth_datetime</td>
<td>No</td>
<td>datetime</td>
<td>The date and time of birth of the person.</td>
</tr>
<tr>
<td>race_concept_id</td>
<td>Yes</td>
<td>integer</td>
<td>A foreign key that refers to an identifier in the CONCEPT table for the unique race of the person.</td>
</tr>
<tr>
<td>ethnicity_concept_id</td>
<td>Yes</td>
<td>integer</td>
<td>A foreign key that refers to the standard concept identifier in the Standardized Vocabularies for the ethnicity of the person.</td>
</tr>
<tr>
<td>location_id</td>
<td>No</td>
<td>integer</td>
<td>A foreign key to the place of residency for the person.</td>
</tr>
</tbody>
</table>
Home
clairblacketer edited this page on Jul 12, 2017 · 26 revisions

OMOP Common Data Model v5.1.1 Specifications
Authors: Christian Reich, Patrick Ryan, Rimma Belenkaya, Karthik Natarajan, Clair Blacketer
12 July 2017

Welcome to the Common Data Model wiki! This wiki houses all of the documentation for the latest changes added with each release. You can find a pdf added to each release with a historical version at the time of the release. You can navigate the pages using the table of contents below or the links:

Table of Contents

- License
- Background
 - The Role of the Common Data Model
- Design Principles
- Data Model Conventions
- Glossary of Terms
 - Standardized Vocabularies
 - CONCEPT
 - VOCABULARY
 - DOMAIN
 - CONCEPT_CLASS

CDM v5.0.1
2016

CDM v5.1
2017

CDM v5.2
2024
Conventions

<table>
<thead>
<tr>
<th>No.</th>
<th>Convention Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>All tables representing patient-related Domains have a foreign-key reference to the person_id field in the PERSON table.</td>
</tr>
<tr>
<td>2</td>
<td>Each person record has associated demographic attributes which are assumed to be constant for the patient throughout the course of their periods of observation. For example, the location or gender is expected to have a unique value per person, even though in life these data may change over time.</td>
</tr>
<tr>
<td>3</td>
<td>The GENDER_CONCEPT_ID should store what is believed to be the biological or sex assigned at birth. If the data set does have gender identification information, this should be stored in the OBSERVATION table (using the gender concepts 8532-Female or 8607-Male in OBSERVATION_CONCEPT_ID) [THEMIS Issue #32].</td>
</tr>
<tr>
<td>4</td>
<td>If we do not know the month or day of birth, we do not guess. A person can exist without a month or day of birth. If a person lacks a birth year that person should be dropped [THEMIS Issue #30].</td>
</tr>
<tr>
<td>5</td>
<td>Living patients should not have a value in PERSON.DEATH_DATETIME, nor should they have any records relating to death either in the CONDITION_OCCURRENCE or OBSERVATION tables.</td>
</tr>
<tr>
<td>6</td>
<td>Only one death date per individual can be used. If a patient has clinical activity (e.g. prescriptions filled, labs performed, etc) more than 60+ days after death you may want to drop the death record as it may have been falsely reported. If multiple records of death exist on multiple days you may select the death that you deem most reliable (e.g. death at discharge) or select the latest death date.</td>
</tr>
<tr>
<td>7</td>
<td>If multiple death records occur, the date and the person have to be the same, but the cause can be different. Can be reported by different sources as well.</td>
</tr>
<tr>
<td>8</td>
<td>If PERSON.DEATH_DATETIME cannot be precisely determined from the data, the best approximation should be used.</td>
</tr>
</tbody>
</table>
| 9 | The DEATH_DATETIME in the PERSON table should not be used as the way to find all deaths.
 - select * from PERSON where death_datetime is not null should not be the practice
 - Rather, deaths should be found through the OBSERVATION table and the PERSON table is only used to determine which death date should be used in analysis |
OMOP Common Data Model

The Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) is an open approach to standardize the structure and content of observational data and to enable efficient analyses that describe the structure of the model itself and the agreed upon conventions for each table and field as detailed here. To download the vocabulary itself, please visit https://ohdsi.github.io/Hades/.

Current CDM Version

The current CDM version is CDM v5.4, depicted below. This CDM version was developed over the past via our issues page. The list of proposed changes was then shared with the community in OHDSI Community calls, discussions with the OHDSI Steering Committee, and discussions with changes were then delivered to the Community through a new R package designed to dynamically supported SQL dialects.

- Link to DDLs for CDM v5.4
- Link to ReadMe for instructions on how to use the R package
Summary: This page provides an overview of the THEMIS project.

Table of Contents

- Introduction
 - What falls under Themis and what does not
- Topic Processing
- Getting Involved