

APAC Scientific Forum

April 4, 2024

Agenda

- April OHDSI/OMOP Events in APAC
- Enabling Genotyping Data Capture in OMOP CDM: Case Study of GUSTO GDM Cohort by Singapore A*STAR

OHDSI/OMOP Event in Japan

- Date: April 17, 2024
- Venue: National Cancer Center Hospital, Tsukiji, Tokyo
- Agenda

Time	Торіс	Speaker
13:00 - 13:15	OMOP, OHDSI Japan and FedAna introductions	Tatsuo Hiramatsu
13:15 – 13:20	OMOP initiatives at National Cancer Center Hospital East (NCCE)	Yoshihiro Aoyagi
13:20 - 13:25	Generating RWD/RWE in OHDSI APAC using the OMOP CDM	Mui Van Zandt
13:25 – 13:30	OMOP activities in Japan	Shinichiro Ikeda
13:30 - 14:30	Why federated (network) studies within a country?: the OHDSI UK Studyathon experience	Dani Prieto-Alhambra
14:30 - 15:00	Discussion/Q&A with audience	
15:00 - 15:30	Break	
15:30 – 19:30	Hands-on session: Replication of Association of Ticagrelor vs Clopidogrel With Net Adverse Clinical Events in Patients With Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention	Seng Chan You

Registrations open at https://odjpn.doorkeeper.jp/events/171041!

OHDSI/OMOP Event in Thailand

- Date: April 24, 2024
- Venue: Eastin Grand Hotel Phayathai, Bangkok
- Agenda

Time	Торіс	Speaker
09:10-09:30	Trends in RWD/RWE and data standardization	Mui Van Zandt
09:30 - 09:50	European OMOP initiatives	Sarah Seager
09:50 - 10:50	OHDSI/OMOP Introduction	Mui Van Zandt/Sarah Seager
10:50 - 11:20	Break	
11:20 - 11:40	Lessons learned adopting OHDSI/OMOP in Thailand	Natthawut Adulyanukosol
11:40 - 12:00	Local perspectives and considerations on RWD/RWE	Panu Looareesuwan
12:00 - 13:30	Lunch	
13:30 - 14:45	OMOP CDM and Vocabulary + Vocabulary mapping exercises	Mui Van Zandt/Gyeol Song
14:45 - 15:00	Break	
15:00 - 16:30	OMOP conversion process + ETL exercises	Mui Van Zandt/Gyeol Song
16:30 - 17:00	Closing & Networking	

Registrations open at https://www.eventbrite.com/e/859210881877!

Enabling Genotyping Data Capture in OMOP CDM Case Study of GUSTO GDM cohort

Erwin Tantoso Data Management 04 April 2024 ARES PRIVATE

GUSTO Birth Cohort

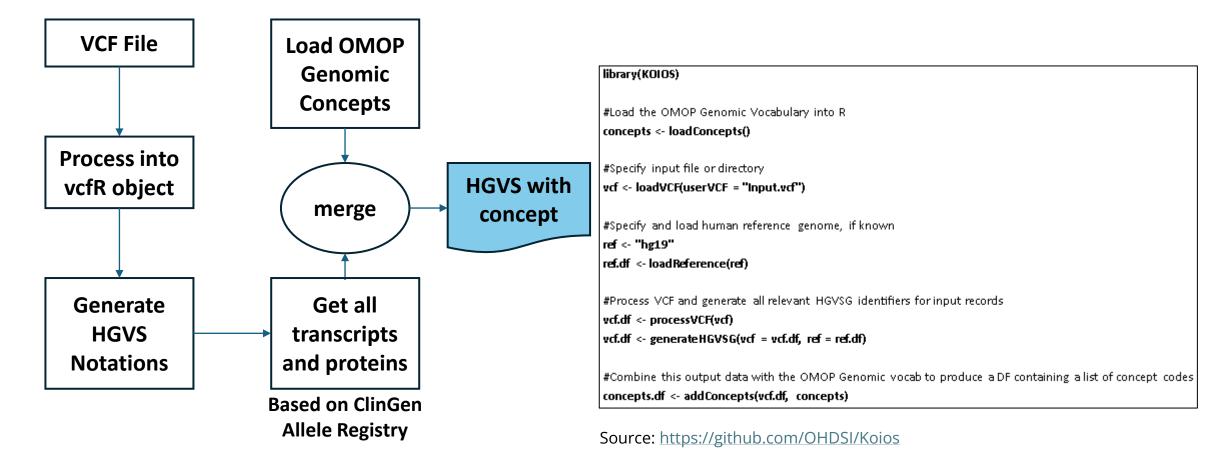
- Growing Up in Singapore Towards healthy Outcomes (GUSTO) study is a major collaborative research effort involving partners across Singapore from healthcare and research alike, i.e. NUS, KKH and A*STAR SICS.
- The purpose of GUSTO cohort study is to understand how conditions in pregnancy and early childhood influence the subsequent health and development of women and children.
- Multimodality data which includes demographics profile, women's health, children's health, maternal and child metabolic and body composition, maternal sleep, personality and mental health, children's neurodevelopment, life event and social relationship, paternal factors, imaging and omics data.
- Omics data include genome, transcriptome, lipidome, epigenome, proteome, nutritional phenotyping, microbiome
- Further information: <u>https://gustodatavault.sg/</u>

Proof-of-Concept for Genotyping Data Capture

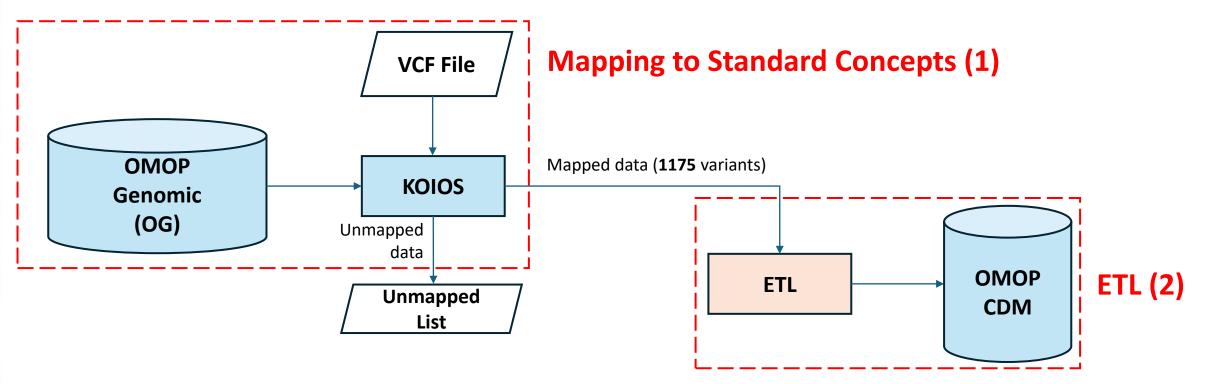
- GUSTO strategic dataset related to Gestational Diabetes Mellitus was scoped for the pilot phase.
 - A simplified version of the dataset is created for this purpose.
- Clinical measurement and observation:
 - with glucose (2 hour OGTT) and fasting glucose measurement
 - with condition occurrence of gestational diabetes mellitus
 - 1176 subjects
- Genotyping data:
 - Illumina HumanOmniExpress + Exome genotyping (>900,000 markers)
 - 1079 subjects
- Total overlap = 1,035 subjects

marker-id	chromosome	position	REF	ALT
exm21343	chr1	16451737	С	G
rs10799764	chr1	23117460	С	Т
rs10890173	chr1	38799283	G	А
rs4387740	chr2	29447108	G	А

Columns	S1	\$2	S 3	
exm21343	c_c	C_C	C_C	
rs10799764	т_с	T_T	C_C	
rs10890173	A_G	G_G	G_G	
rs4387740	A_A	A_G	A_G	



01001


Koios (https://github.com/OHDSI/Koios)

• Tool to identify concept in the OMOP Genomic vocabulary from VCF file, HGVS notations and then map to OMOP Genomic concepts in ATHENA

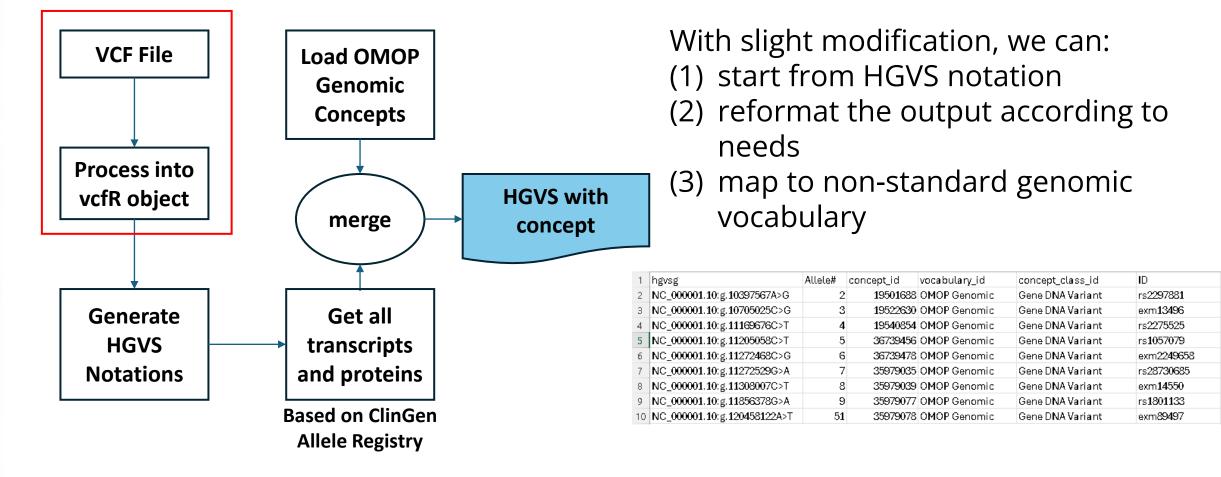
Mapping to OMOP Genomic Vocabularyv

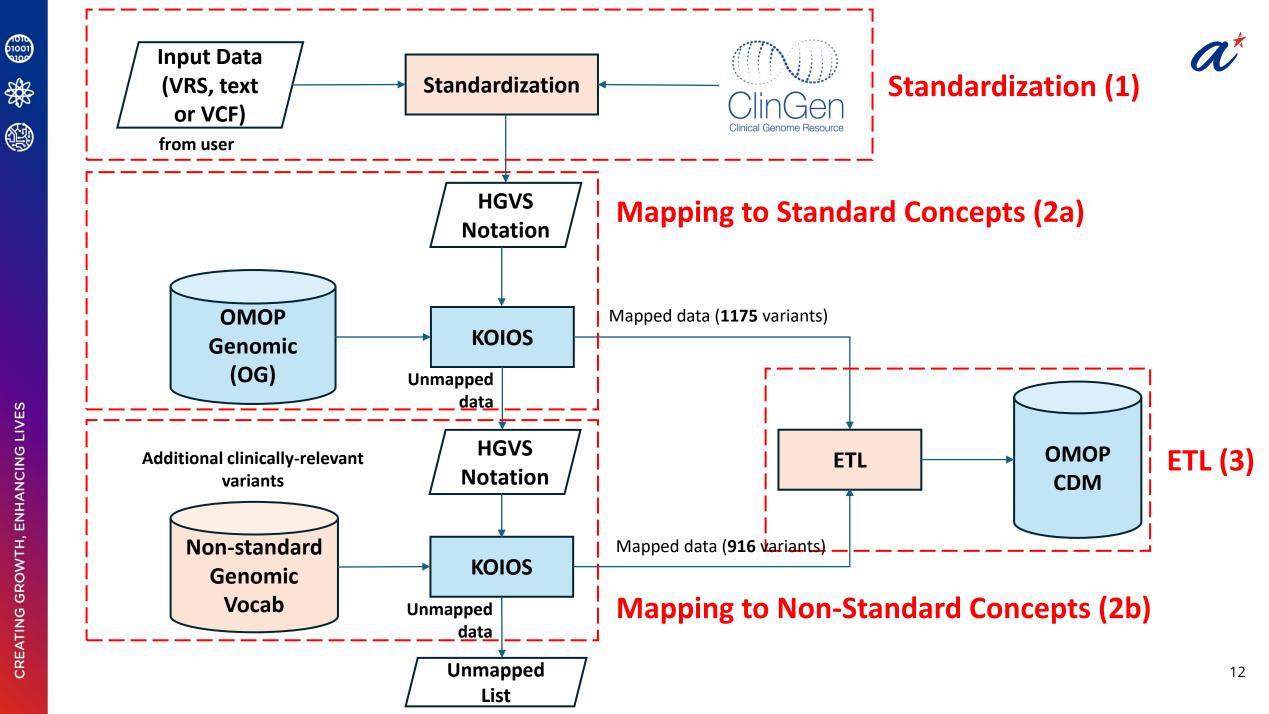
• Two challenges:

- Variant ID representation
 - Can be in different IDs, such as dbSNP, ClinVar variation ID, HGVS notation, transcript annotation, etc.
- Genomic vocabulary
 - Local variants (in population of interest) might not be available in OG vocabulary

01001 1001

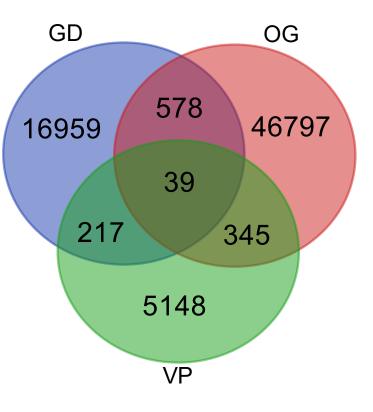
Introducing two subsections to support effort in genotyping data capture


- Challenge 1: Variant ID representation
 - Utilities to standardize the different variant ID representation into HGVS notation
 - Leveraging on KOIOS to take input in HGVS notation (in addition to VCF file)
- Challenge 2: Genomic vocabulary
 - Establishing workflow for adding non-standard genomic vocabulary
 - Adding non-standard genomic vocabulary from public database



Koios (https://github.com/OHDSI/Koios)

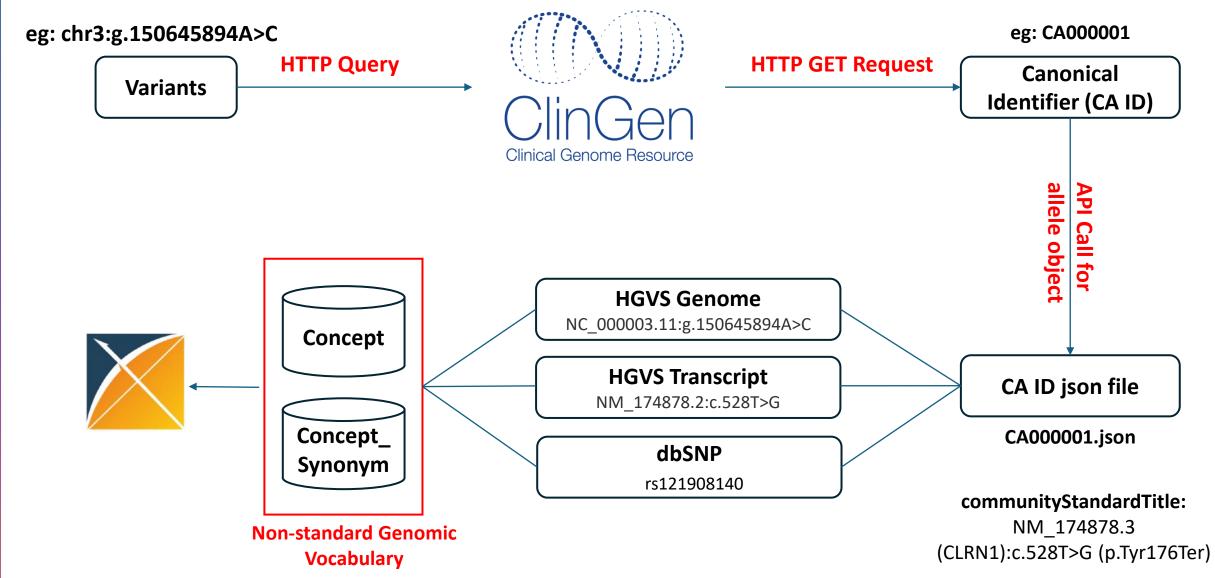
• Tool to identify concept in the OMOP Genomic vocabulary from VCF file, HGVS notations and then map to OMOP Genomic concepts in ATHENA



CREATING GROWTH, ENHANCING LIVES

Establishing Additional Non-Standard Genomic Vocabulary

- ClinGen (2023-12-08)
 - Gene-Disease Validity (17,793 CA IDs across 1817 genes)
 - Variant Pathogenicity (5,749 CA IDs)
- OMOP Genomic (2024-03-02)
 - 47,759 CA IDs


List	# unique elements
Gene-Disease (GD)	17,793
Variant Pathogenicity (VP)	5749
OMOP Genomic (OG)	47,759
GD + VP – OG	22,324
GD + VP – OG – copy number variants (11)	22,313

Generating Non-Standard Genomic Vocabulary

Measurement Table (GUSTO GDM data)

Column	Example 1	Example 2
measurement_id	1424363	1438986
person_id	11010015	11010015
measurement_concept_id	19501688	80003929
measurement_date	20090907	20090907
measurement_datetime		
measurement_time		
measurement_type_concept_id	32856	32856
operator_concept_id		
value_as_number	1	1
value_as_concept_id	4242377	4242377
unit_concept_id		
range_low		
range_high		
provider_id		
visit_occurrence_id	1101001503	1101001503
visit_detail_id		
measurement_source_value		
measurement_source_concept_id		
unit_source_value		
unit_source_concept_id		
value_source_value	A_G	T_C
measurement_event_id		
meas_event_field_concept_id		

measurement_type_concept_id: 32856

 Lab: Standard Concept (Class: Type Concept; Domain: Type Concept; Vocab: Type Concept)

Value_as_number

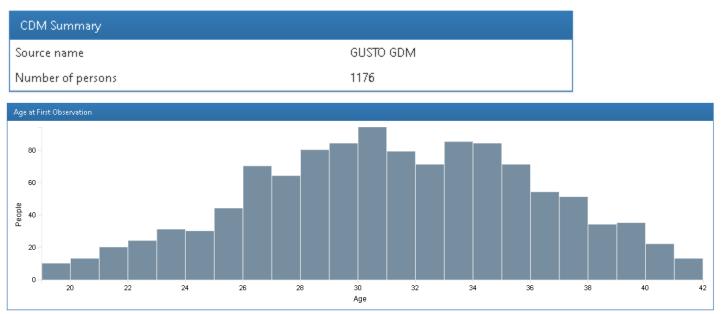
• Genotype 1 and 2

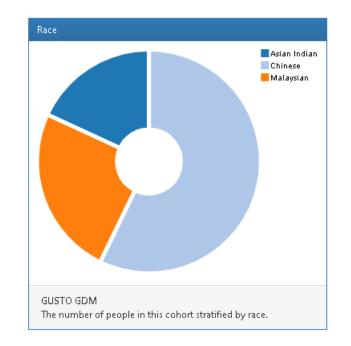
Value_as_concept_id

- DOMAIN: Meas Value
- CLASS: Qualifer Value
- VOCABULARY: SNOMED
 - 4242377: 1
 - 4078696: 2

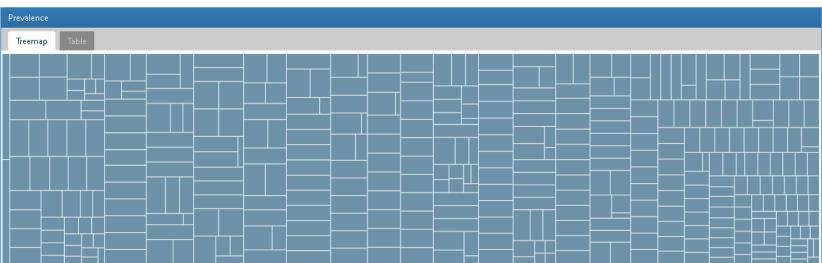
01001 100

Study Design in ATLAS


- Concept sets
 - Gestational Diabetes Mellitus (GDM)
 - Include concept id: 4024659
 - This concept set is used as the criteria to include cohort with GDM
 - PDGFRA (OMOP5552068)
 - Include concept id: 19638240
 - Used as a proxy to include cohort with genotype measurement
- Cohort definitions
 - Cohort with GDM
 - Cohort entry: condition occurrence of GDM
 - Inclusion criteria: with measurement of PDGFRA (OMOP5552068)
 - Cohort without GDM
 - Cohort entry: measurement of PDGFRA (OMOP5552068)
 - Inclusion criteria: with no condition occurrence of GDM


- Cohort characterizations
 - Cohort with GDM vs Cohort without GDM
 - Feature analyses:
 - Demographic age group
 - Demographic race
 - Measurement

CREATING GROWTH, ENHANCING LIVES


Overview of GUSTO Cohort

GUSTO GDM Dashboard Report

GUSTO GDM Measurement Report

Cohort with GDM vs Cohort without GDM

Cohort with GDM

Cohort with GDM (with genotypes)

Cohort Entry Events

People may enter the cohort when observing any of the following:

1. condition occurrences of 'Gestational Diabetes Mellitus'.

Limit cohort entry events to the earliest event per person.

Inclusion Criteria

1. with genotype measurement

Entry events having at least 1 measurement of 'PDGFRA (OMOP5552068)'.

Cohort Exit

The person exits the cohort at the end of continuous observation.

Cohort Eras

Entry events will be combined into cohort eras if they are within 0 days of each other.

	Match Rate	Matches	Total Events
Summary Statistics:	85.02%	193	227

Cohort without GDM

Cohort without GDM (with genotypes)

Cohort Entry Events

People may enter the cohort when observing any of the following:

1. measurements of 'PDGFRA (OMOP5552068)'.

Limit cohort entry events to the earliest event per person.

Inclusion Criteria

1. no condition occurrence of GDM

Entry events having at most 0 condition occurrences of 'Gestational Diabetes Mellitus'.

Cohort Exit

The person exits the cohort at the end of continuous observation.

Cohort Eras

Entry events will be combined into cohort eras if they are within 0 days of each other.

	Match Rate	Matches	Total Events
Summary Statistics:	81.35%	842	1,035

Cohort Characterization (Cohort with GDM vs Cohort without GDM)

Comparison across race concept id

Covariate 🍦	Fundama A	Concept	Cohort w	ith GDM	Cohort wit	hout GDM	Std diff 🖕
	Explore 🍦	Id	Count 🔶	Pct 🔶	Count 🔶	Pct 🔶	Sta airr 🔻
Malaysian	N/A	38003587	28	14.51%	226	26.84%	-0.3081
Asian Indian	N/A	38003574	44	22.80%	141	16.75%	0.1524
Chinese	N/A	38003579	121	62.69%	475	56.41%	0.1282
Showing 1 to 3 of 3 entries Previo							

Showing 1 to 3 of 3 entries

Comparison across age group

Covariate	Fundama A	Cohort with GDM		Cohort wit	Std diff 🚽		
Covariate	Explore 🍦	Id	Count 🔶	Pct 🔶	Count 🔶	Pct 🔶	Std diff 🔻
20 - 24	N/A	0	6	3.11%	94	11.16%	-0.3168
25 - 29	N/A	0	41	21.24%	263	31.24%	-0.2286
35 - 39	N/A	0	57	29.53%	169	20.07%	0.2204
40 - 44	N/A	0	14	7.25%	23	2.73%	0.2088
30 - 34	N/A	0	75	38.86%	285	33.85%	0.1043

Showing 1 to 5 of 5 entries

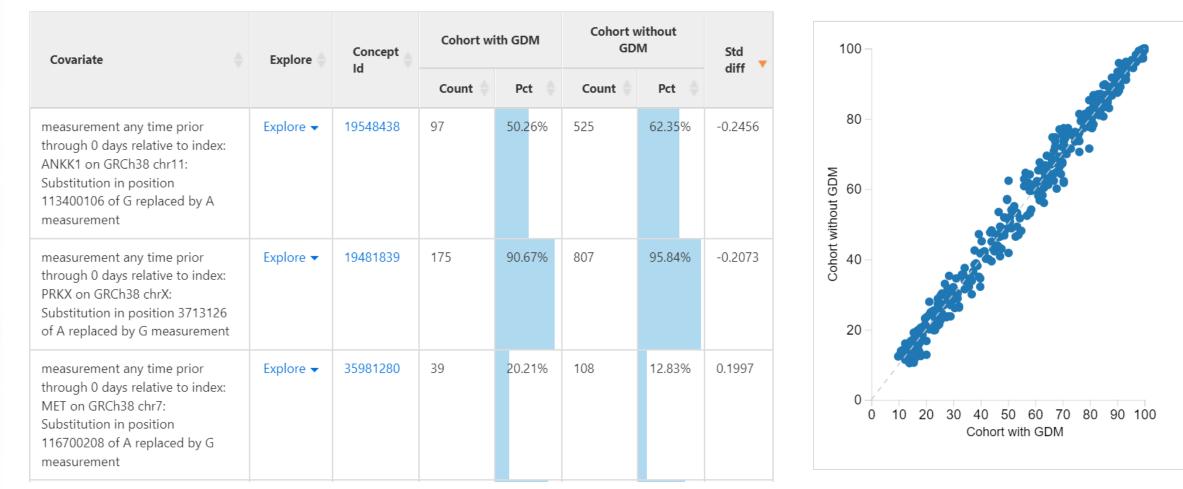
Previous 1 Next

CREATING GROWTH, ENHANCING LIVES

Cohort Characterization (Cohort with GDM vs Cohort without GDM)

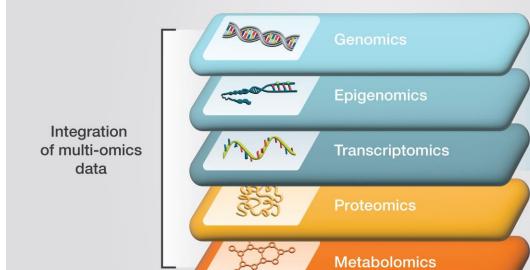
Comparison across measurement (fasting glucose and glucose 2hours PO)

Charles A	Strata Covariate Va		Cohort with GDM				Cohort without GDM				ct.1.1111
Strata 🍦	Covariate	field	Persons	Avg 🔶	Std Dev 💧	Median 🖕	Persons	Avg 🔶	Std Dev 🍦	Median 🖕	Std diff 🛛 🔻
All stratas	measurement value during any time prior through 0 days relative to index: Glucose [Moles/volume] in Serum or Plasma2 hours post 75 g glucose PO (millimole per liter)	Events count	193	8.86	1.16	8.50	842	6.02	0.98	6.10	2.6373
All stratas	measurement value during any time prior through 0 days relative to index: Fasting glucose [Moles/volume] in Serum or Plasma (millimole per liter)	Events count	193	4.68	0.74	4.50	842	4.28	0.38	4.20	0.6707


Showing 1 to 2 of 2 entries

CREATING GROWTH, ENHANCING LIVES

Cohort Characterization (Cohort with GDM vs Cohort without GDM)



Comparison across genotype

Future Work

- Expansion into WGS data
- Other OMICS Data

Nucleic

acid-based

methods

 Methodological development

Acknowledgement

NUHS and MOH

- A/Prof. Ngiam Kee Yuan
- A/Prof. Leong Khai Pang
- Dr. Mornin Feng Mengling
- Ms. Koh Mingshi
- Dr. Low Pin Yan
- Mr. Yeo Zhen Xuan

• GUSTO Team

- Dr. P Mukkesh Kumar
- Ms. Cindy Ho
- Mr. Tan Jing Yang

PRECISE Team

- Dr. Nicolas Bertin
- Dr. Maxime Hebrard
- Dr. Max Lam
- OHDSI Team
 - Dr. Anna Ostropolets
 - Dr. Christian Reich
 - Mr. Laurence Lawrence-Archer (Odysseus Inc.)

GUSTO TROST

GROWING UP IN SINGAPORE TOWARDS HEALTHY OUTCOMES

Thank you!