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Observational research

• Subjects observed in their natural settings
– Real-world evidence

• Often using data collected for other purposes
– Administrative claims data

• Merative CCAE (10M’s)
– Electronic health record (EHR) data

• Columbia clinical data warehouse (6M)
– Other sources

• Census, social media, mobile sensors, imaging

• Versus experimental
– Randomized clinical trials (RCTs)



Observational Health Data Sciences 
and Informatics (OHDSI, as “Odyssey”)

Mission: To improve health by empowering 
a community to collaboratively generate 
the evidence that promotes better health 
decisions and better care

A multi-stakeholder, interdisciplinary, 
international collaborative with a 
coordinating center at Columbia University

http://ohdsi.org

http://ohdsi.org/


OHDSI

• Experts in informatics, statistics, epidemiology, clinical sciences
• Active participation from academia, government, industry, providers
• >600 papers, specific influence on EMA and FDA for COVID-19

OHDSI By The Numbers

• 3758 collaborators
• 83 countries
• 21 time zones
• 6 continents
• 1 community



OHDSI data partners



OHDSI’s 10 LEGEND Principles for generating 
reliable evidence

• LEGEND will generate evidence at a large scale
• Dissemination of the evidence will not depend on the estimated effects
• LEGEND will generate evidence using a prespecified analysis design
• LEGEND will generate evidence by consistently applying a systematic 

process across all research questions
– No thumb on the scale

• LEGEND will generate evidence using best practices
• LEGEND will include empirical evaluation through the use of control 

questions
• LEGEND will generate evidence using open-source software that is freely 

available to all
• LEGEND will not be used to evaluate new methods
• LEGEND will generate evidence across a network of multiple databases
• LEGEND will maintain data confidentiality; patient-level data will not be 

shared between sites in the network

Schuemie JAMIA 2020



Verified and open



Motivation for the study

• Was working on confounding bias in 
comparative cohort studies

• Was using many covariates
• Diagnostics were failing for smaller studies
• Carried out this study
• Found the results apply even for handful of 

covariates



Addressing reproducibility
Propensity score adjustment with large-scale covariate set: measured 
confounding (and some unmeasured?)

• Take advantage of the huge databases and balance on tens of 
thousands of covariates, pulling in other variables (BP)

• Mimic balance of randomization (imperfect)
• Don’t rely on human expertise to select confounders: systematic
• Diagnostics

Normand 2001, Austin 2007: 
Standardized mean difference 
< 0.1



Confounding

• Does butane gas cause lung 
cancer?

Butane 
lighter

Lung 
cancer

Smoking

?



Propensity score for confounding in 
comparative cohort studies

• Propensity score = patient’s probability of belonging 
to the target cohort vs. the comparator cohort, given 
the baseline covariates

• Propensity score can be used as a ‘balancing score’
– if the two cohorts have similar propensity score distribution, 

then the distribution of covariates should  be the similar

• Balance the propensity -> balance the covariates
• Balance the covariates -> the comparisons are similar
– Make a causal assertion: must be due to the treatment

Rubin Biometrika 1983



How to select the confounders
• Manual selection -> poor agreement

– Chien 2015: age, month, gender, #visits, income urbanization, #drugs, specific 
drugs, Charlson, comorbidities (16), +HDPS variables

– Hicks 2018: age, sex, year of cohort entry, body mass index, smoking status, 
alcohol related disorders (including alcoholism, alcoholic cirrhosis of the liver, 
alcoholic hepatitis, and hepatic failure), and history of lung diseases (including 
pneumonia, tuberculosis, and chronic obstructive pulmonary 
disease), duration of HTN Rx, statin use, #drugs

– Ku 2018: age, sex, race, income status, baseline HF, baseline myocardial 
infarction, baseline peripheral artery disease, baseline stroke, baseline eGFR, 
baseline proteinuria, and time-dependent covariates including diabetes 
mellitus, obesity, systolic blood pressure, statin use, aspirin use, diuretic use, 
and concurrent use of other antihypertensive agents for the outcome of HF

– Magid 2010: age, gender, days on thiazide prior to 2nd agent start, # of visits 
prior to thiazide, Mean Systolic BP, Mean Diastolic BP, Chronic Obstructive 
Pulmonary Disease, Hyperlipidemia, Cancer, Dementia, Chronic liver disease, 
Depression

– Hasvold 2014: age, gender, elevated blood glucose, overweight and low socio-
economic status are known risk factors for diabetes, High cholesterol and 
hypertension are additionally known risk factors for CVD

• Empirical selection



Large-scale propensity score (LSPS)
• A systematic approach to propensity adjustment
• Use a large set of covariates (10,000 < n < 100,000)
• But don’t want to balance everything
– Mediators – pre-treatment
– Simple colliders – pre-treatment
– Instruments – diagnostics, domain knowledge
– M-bias – correlation with underlying causes

• Fit a propensity model
– LASSO (regularized regression) because #variables > #cases

• Match or stratify on propensity score
• Diagnostic: check that covariate balance is achieved on 

all observed variables

Zhang JBI 2022
Tian Int J Epi 2018



Notes about LSPS

• Goal is to adjust for all pre-treatment variables
– Usually try to select confounders; not here
– Differs from HDPS …, which attempt to select 

confounders
• More variables than cases, so use LASSO
– Merely doing dimension reduction by picking the 

informative variables, but attempting to convey all the 
information

• When adjust for many variables, may adjust for 
ones that are not directly measured

• Baseline blood pressure gets pulled in for HTN studies
• Related to Wang and Blei Deconfounder
• Ok on colliders, mediators, instruments, M-bias



LSPS
• Reduce bias if balance on many 

covariates instead of a few 
human-selected covariates (bias 
measured via negative controls)

• LSPS performs better than 
confounder selection like high-
dimensional propensity score 
(HDPS)

• LSPS does better than manual 
selection if a confounder is 
missed

16



How do you know you succeeded?

• Whether you balance 5 or 50,000 covariates 
that are potential confounders, how do you 
know it worked?



Diagnostic: Covariate balance

Plot 60,000 covariates; 
most are binary:

abs(Ptarget group – Pcomparator group)  
standard deviation

Normand 2001, Austin 2007: 
Standardized mean difference 
< 0.1



Problem for today

• As sample size falls, you always fail your 
diagnostics with chance imbalance
– What to do different?



Covariate balance review

• Covariate balance is an important diagnostic 
for PS adjustment in cohort studies (1/3rd) 
[Granger 2020]

• The goal is not to detect imbalance, but to 
detect substantial imbalance [Austin 2009, …]
– Else as sample size rises and therefore precision of 

SMD rises, all studies will be rejected

• The most common solution is to check for 
|SMD| over 0.1 (or 0.25) [Austin 2009, …]

Hripcsak medRxiv 2024



Reject small cohorts for chance 
imbalance

• Imbalance by chance

𝑃 𝑓𝑎𝑙𝑠𝑒	𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛 = 1 − 2Φ
𝑁
20

− 1
!

– Total sample of 250 and 5 covariates, 90% chance 
of rejecting study as imbalanced (SMD>0.1)

– Total sample of 1000 and 20 covariates, 90%
– As covariates increase, more chance rejection

Hripcsak medRxiv 2024



Idea

• Check not for nominally exceeding a 
threshold, but for statistically significantly 
exceeding the threshold
– As sample size falls, the threshold allows more 

imbalance but the corresponding wider effect CI 
tolerates more bias
• Confounding could shift effect estimate 1.2 to 1.4 but CI 

is 0.7 to 3
• The CI is designed to accommodate chance imbalance, 

so no reason to reject studies with chance imbalance

• Try this new rule in simulation and RWD



Standardized mean difference (SMD)
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Three primary rules

• All – accept all studies (ignore imbalance)
– Imbalance commonly ignored

• Nominal – reject studies with any covariate 
|SMD| is greater than 0.1
– Most common threshold when one is used

• Signif – reject studies with any covariate 
|SMD| statistically significantly greater than 
0.1 after Bonferroni correction for #covariates
– Our proposal

Hripcsak medRxiv 2024



Base case simulation conditions
• Sample size combined cohorts 250 to 4000 per site = database (also 

20,000)
– network has 80 to 5 databases, keeping total sample size constant 

over network
• 1 treatment

– binary with base positive rate 0.5
• 1 outcome

– varied true effect size from 0
– base prevalence 0.25 (0.01)

• 1000 covariates (also 20 and 100,000)
– one confounder with varied strength from 0 (also distributed 

confounders)
– nine outcome predictors
– rest independent
– covariates binary with base positive rate 0.5 (0.1)

Hripcsak medRxiv 2024



Simulation base case

• 𝑥),!~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 0.5

• 𝑡)~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 0.5 + 𝑐+ 1 − 2𝑥),,

• 𝑦)~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 <

=

0.25 + 𝑐- 1 − 2𝑡) +
𝑐. 1 − 2𝑥),, + 𝑐/ 1 − 2𝑥),# +⋯+
𝑐/ 1 − 2𝑥),,0

Hripcsak medRxiv 2024



Simulation analysis

• Logistic regression (R glm) of treatment on 
outcome

• Purposely not include covariates, because the 
goal is to see the effect of different degrees of 
residual confounding
– E.g., as if PS adjustment had been done and may not 

have been fully effective
– We should see imbalance and possibly an effect 

estimate biased by confounding
• Run analysis on each database, and then do 

meta-analysis on effect estimate (R rma)



Three rules, two levels

• Rules
– All – accept all studies (ignore imbalance)
– Nominal – reject studies any |SMD| > 0.1
– Signif – reject studies any |SMD| statistically 

significantly > 0.1 after Bonferroni
• Levels
– Database

• Apply rule to each covariate, reject some databases
– Network

• Random effects model (R rma) on the SMDs for each 
covariate across non-rejected databases

• Apply the rule to the meta-analytic estimates, potentially 
reject whole network study

Hripcsak medRxiv 2024



Rules can be applied at the database or 
network level

• <network> on <database>
– All-On-All
– All-On-Nominal
– All-On-Signif
– Nominal-On-All
– Nominal-On-Nominal
– Nominal-On-Signif
– Signif-On-All
– Signif-On-Nominal
– Signif-On-Signif

Hripcsak medRxiv 2024



Metrics

• Type 1 error rate
– Among studies with no true effect
– Numerator – # not rejected and effect p<0.05
– Denominator – total number of studies

• Power
– Among studies with a true effect
– Numerator – # not rejected and effect p<0.05
– Denominator – total number of studies

Hripcsak medRxiv 2024



Rule performance at the database level 
on simulation

Hripcsak medRxiv 2024

Type 1 error Power
Colors = degree of confounding

Sample size (250-4000)

0.05 →

All

Nominal

Signif



Rule performance at the database level 
on simulation

Hripcsak medRxiv 2024

Poor type 1 
error

Poor power

Good power 
with low 
confounding

Moderate 
type 1 error

All

Nominal

Signif



Rule performance at the database level 
on simulation

• All (no diagnostic) – unacceptable type 1 error 
(near 1)

• Nominal (SMD>0.1) – unacceptable power 
(near 0)

• Signif (SMD statistically significant >0.1) – 
moderate type 1 error (0 to 0.2) and good 
power (near ideal)

Hripcsak medRxiv 2024



Rule performance at the network level 
on simulation

Hripcsak medRxiv 2024

All network

All database

Nominal database

Signif database

Nominal network

Signif network



Rule performance at the network level 
on simulation

• All network = no network diagnostic
– Three rows fail
– Note: Signif just at database level fails

• Network improves precision of effect estimate but not of SMD

Hripcsak medRxiv 2024

Poor type 1 
error

Poor power

Poor type 1 
error

All On
All

All On
Nominal

All On
Signif



Rule performance at the network level 
on simulation

• Nominal at network level
– Nominal-On-All, Nominal-On-Signif good here
– Meta-analysis has enough power to avoid failing by chance

Hripcsak medRxiv 2024

Moderate 
type 1 error

Poor power

Moderate 
type 1 error

Good power 
with low 
confounding

Good power 
with low 
confounding

Nominal
On All

Nominal
On Nominal

Nominal 
On Signif



Rule performance at the network level 
on simulation

• Signif at network level
– Signif-On-All, Signif-On-Signif good here
– But higher type 1 error

Hripcsak medRxiv 2024

Moderate 
type 1 error

Poor power

Moderate 
type 1 error

Good power 
with low 
confounding

Good power 
with low 
confounding

Signif
On All

Signif On 
Nominal

Signif On 
Signif



Rule performance at the network level 
on simulation

• These seem to work with moderate excess 
type 1 error but good power
– Nominal-On-All
– Nominal-On-Signif
– Signif-On-All
– Signif-On-Signif



Real-world data
• Reused data from OHDSI LEGEND hypertension and type 1 diabetes 

studies
– [Suchard Lancet 2019, Khera BMJ Open 2022]
– Four treatment comparisons

• lisinopril vs hydrochlorothiazide, lisinopril vs metoprolol, 
sitagliptin vs liraglutide, sitagliptin vs glimepiride

– 110 real negative controls (hazard ratio 1)
– Corresponding synthetic positive controls (HR 1.5, 2, 4)

• L1-regularized Poisson regression model
• Data and analysis

– Three sources: Merative Medicare, Merative Medicaid, Optum EHR
– 20,000 cases divided among “databases” with 250 to 4000 cases
– 98,681 covariates, built a large-scale propensity model
– Several analytic methods: unadjusted (crude) versus adjusted
– Cox proportionate hazards model on matched or stratified sample or 

crude sample



Rule performance at the network level 
on real-world data

Hripcsak medRxiv 2024

NominalOnAll

NominalOnSignif

SignifOnAll

SignifOnSignif

Poor 
power

Poor 
power

Good power 
on adjusted

Good power 
on adjusted

Good type 
1 error

Good type 
1 error

Unadjusted (more confounded)
Adjusted (less confounded)



Rule performance at the network level 
on real-world data

• On real-world data
– Nominal-On-All and Nominal-On-Signif have near 

zero power
• And these were studies with good equipoise and 

proven good balance on the adjusted ones using larger 
sample sizes

– Signif-On-All and Signif-On-Signif have good type 1 
error and as good power as no diagnostics

• On 4 hypotheses, 3 data sources, 5 analytic 
methods, Signif-On-(All,Signif) worked

Hripcsak medRxiv 2024



Shouldn’t type 1 error be 0.05?

• Given a threshold on SMD, it is 
possible to create a bad-case 
simulation scenario
– Typical study with 20,000 cases 

and 20 covariates under no true 
effect but with confounding, all 
9 rules get type 1 error over 0.5

• We purposely found the weak 
points using our simulation
– Could do Bayesian analysis
– Probability of getting these 

parameters under reasonable 
priors is low (thus RWD result)

Hripcsak medRxiv 2024



Can correct for type 1 error

Confidence interval calibration using negative controls: residual bias
• Address residual confounding using hypotheses you know the answer for

• 50 to 100 controls
• If too many are positive, then systematic error is operative
• Calibrate to keep the type 1 error at 0.05

Schuemie PNAS 2018



Same results for 20 covariates

• Curve shifted to the left, 
but same pattern and 
tradeoff for type 1 error 
versus power

Hripcsak medRxiv 2024



What if confounding is heterogeneous?

• The effective rules still 
work
– Signif-On-Signif has a little 

more power and a little 
less type 1 error than 
Signif-On-All

Hripcsak medRxiv 2024



What if only 5 databases

Hripcsak medRxiv 2024

• Nominal at network level 
(which appeared otherwise 
to have potential in 
simulations) loses all power 
on smaller databases
– Meta-analysis of the SMDs 

no longer gain enough 
precision to avoid chance 
rejection

• Thus even simulation favors 
Signif-On-Signif



Sensitivity to prevalence

• If drop prevalence of positive covariate (10%) 
or outcome (1%), get same results

Hripcsak medRxiv 2024



Is Bonferroni correction needed?

• Eliminating the Bonferroni 
correction does not 
improve the type 1 error 
rate but does drop power 
to 0 at the smallest 
sample sizes

Hripcsak medRxiv 2024



Doesn’t increasing # covariates hide 
confounding?

• Bonferroni correction for many covariates effectively 
raises the SMD threshold; doesn’t that unfairly allow 
more confounding?

• If we have actual knowledge that there is no 
confounding, then follow that
– (never happens)

• Otherwise, assume confounders distributed in the 
covariates
– Probability 0.001 of covariate being imbalanced
– Sample size 4000; 10,000 covariates; reject 0.62 of studies
– With 60,000 covariates, rose to 1.0

• Bonferroni does not overwhelm imbalance detection 

Hripcsak medRxiv 2024



Can you produce a good PS model in 
such small databases?

• Yes
– Using same data sources and hypotheses
– Worked well ≥1000, usually >250, sometimes 125
– [Schuemie OHDSI 2023]



Haven’t we already decided that a 
statistical test for imbalance is bad?

• Mostly arguing against test for >0, not >0.1
• [Imai J Royal Stat Soc A 2008]
– Statistical test depends on sample size but imbalance 

does not
• But the impact of imbalance does depend on sample size

– P-value thresholds are arbitrary
• 0.1 is also arbitrary
• It is an empirical question that can be studied with RWD

– The target of analysis is the sample, not an underlying 
population
• Insofar as we are distinguishing chance from systematic 

imbalance, we do care about an underlying population
• Can see the method as a heuristic

Hripcsak medRxiv 2024



Shouldn’t we correct for imbalance?

• We sometimes correct for imbalance that is 
clearly chance (RCTs)
– You can still correct for imbalance
– We are deciding whether to reject a study, 

not whether to correct once it passes



Conclusions

• Small cohorts result in rejection for chance 
imbalance (SMD>0.1) and zero power

• As sample size falls, effect CIs lengthen, rendering 
small confounding less important
– Using a statistical test for sufficient imbalance raises 

the threshold where a given degree of confounding is 
tolerable

• Our results comparing no diagnostic (old), 
nominal threshold (old), statistical test (new)
– Statistical test maintains the best type-1-error to 

power balance across the simulations and RWD 

Hripcsak medRxiv 2024



Conclusions

• Meta-analysis of network studies may produce 
a more precise effect estimate
– Therefore you also need a more precise diagnostic 

for imbalance, else systematic bias will 
predominate

– Our results show that meta-analysis of SMDs and 
a statistical test produce the best type-1-error to 
power balance

Hripcsak medRxiv 2024



Conclusions

• The statistical test for imbalance makes it 
feasible to check thousands of covariates
– Regardless of how many confounders are adjusted 

for, the data set includes information about 
imbalance and the effect of potential confounding

– Not checking for imbalance on all covariates is a 
head-in-the-sand approach

– Imbalanced variables should be justified as known 
or proven instruments

Hripcsak medRxiv 2024



Conclusions

• Can produce a simulation with type 1 error 
greater than alpha
– But this is true across sample sizes, number of 

covariates, and diagnostics
– Therefore aimed for best balance of type 1 error 

and power

Hripcsak medRxiv 2024



Recommendations

• For PS-adjusted cohort studies, check for 
imbalance of covariates

• Check for imbalance (SMD) statistically 
significantly greater than 0.1 (or other pre-
specified threshold) in any covariate after 
Bonferroni correction

• Network studies require meta-analysis of each 
covariate and checking for statistically significant 
imbalance (at database and network level)

• Check all available covariates, not just the ones 
adjusted for

Hripcsak medRxiv 2024
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