How Often: Results from the 2023 Global Symposium

OHDSI Community Call
July 2024
Agenda

• How Often Refresher (5 mins)
• Preliminary Results from the Global Symposium
 – How Often Azza (10 mins)
 – How Often George (10 mins)
 – How Often and Clinicaltrials.gov data (10 mins)
• Next steps (10 mins)
Characterising the background incidence rates of adverse events of special interest for covid-19 vaccines in eight countries: multinational network cohort study

Xintong Li,1 Anna Ostropolets,2 Rupa Makadia,3 Azza Shaobi,1 Gowtham Rao,1 Anthony G Sena,1,6 Eugenia Martinez-Hernandez,4 Antonella Delmeiste,1 Kaitia Verhamme,6,7 Peter R Rijnbeek,9 Talita Duarte-Salles,9 Marc A Suchard,8,9 Patrick B Ryan,10 George Hripcsak,10 Daniel Priolet-Alhambra1,6

ABSTRACT

OBJECTIVE

To quantify the background incidence rates of 15 prespecified adverse events of special interest (AESIs) associated with covid-19 vaccines.

DESIGN

Multinational network cohort study.

SETTING

Electronic health records and health claims data from eight countries: Australia, France, Germany, Japan, the Netherlands, Spain, the United Kingdom, and the United States, mapped to a common data model.

PARTICIPANTS

126 661 070 people observed for at least 365 days before 1 January 2017, 2018, or 2019 from 13 databases.

MAIN OUTCOME MEASURES

Events of interest were 15 prespecified AESIs (non-haemorrhagic and haemorrhagic stroke, acute myocardial infarction, deep vein thrombosis, pulmonary embolism, anaphylaxis, Bell’s palsy, myocardiitis or pericarditis, narcolepsy, appendicitis, immune thrombocytopenia, disseminated intravascular coagulopathy, aseptic meningitis) and database. Rates were pooled across databases using random effects meta-analyses and classified according to the frequency categories of the Council for International Organizations of Medical Sciences.

RESULTS

Background rates varied greatly between databases. Deep vein thrombosis ranged from 387 (95% confidence interval 370 to 404) per 100 000 person years in UK CPRD GOLD data to 1443 (1416 to 1470) per 100 000 person years in US IBM MarketScan Multi-State Medicaid data among women aged 65 to 74 years. Some AESIs increased with age. For example, myocardial infarction rates in men increased from 28 (27 to 29) per 100 000 person years among those aged 18-34 years to 1600 (1374 to 1627) per 100 000 person years in those older than 85 years in US Optum electronic health record data. Other AESIs were more common in young people. For example, rates of anaphylaxis among boys and men were 78 (75 to 80) per 100 000 person years in those aged 6-17 years and 8 (6 to 10) per 100 000 person years in those older than 85 years in Optum electronic health record data. Meta-analytic estimates of AESI rates were classified according to age and sex.

Contextualising adverse events of special interest to characterise the baseline incidence rates in 24 million patients with COVID-19 across 26 databases: a multinational retrospective cohort study

Erica A James,1 Anna Ostropolets,2 Rupa Makadia,3 Azza Shaobi,1 Gowtham Rao,1 Anthony G Sena,1,6 Eugenia Martinez-Hernandez,4 Antonella Delmeiste,1 Kaitia Verhamme,6,7 Peter R Rijnbeek,9 Talita Duarte-Salles,9 Marc A Suchard,8,9 Patrick B Ryan,10 George Hripcsak,10 Daniel Priolet-Alhambra1,6

REFERENCES

1. OHDSI Collaborators, Observational Health Data Sciences and Informatics. OHDSI, New York, NY, USA
2. Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, the Netherlands
3. Pfizer Pharmaceutical Research and Development LLC, T furnace, NY, USA
4. Department of Informatics, Imaging & Data Sciences, University of Manchester, Manchester, UK
5. College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkhay, Kingdom of Saudi Arabia
6. Odysseas Data Services, Prague, Czechia
7. Department of Medical Information, Assistance Publique - Hopitaux de Marseille, Marseille, France
8. Easter Egyp, Paris, France
9. Health Informatics Centre, University of Dundee, Dundee, UK
10. Vision of Population Health and Genomics, University of Dundee, Dundee, UK
11. Department of Public Health, University of Southern Denmark, Odense, Denmark
12. Hospital del Mar, Department of Innovation and Digital Transformation, Barcelona, Spain
13. Hospital del Mar Medical Research Institute (IMHIB), Barcelona, Spain
14. Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
15. Fundació Joan Miró Espanyola de la Investigación en Alzheimers, Barcelona, Spain
16. University of Tartu, Tartu, Estonia
17. Vaskert, Budapest, Serbia
18. University College London, Institute of Health Informatics, London, UK
Factors Influencing Background Incidence Rate Calculation: Systematic Empirical Evaluation Across an International Network of Observational Databases

Anna Ostropolets1,2, Xintong Li2, Rupa Makadia2, Gowtham Rao2, Peter R. Rijnbeek1, Talita Duarte-Salles3, Anthony G. Sema2,4, Azza Shaobi5, Marc A. Suchard1,2, Patrick B. Ryan1,2, Daniel Prieto-Alhambra1 and George Hippsca2,4,

1Columbia University Medical Center, New York, NY, United States. 2Centre for Statistics in Medicine, NDPHS, University of Oxford, Oxford, United Kingdom. 3Janssen Research and Development, Titusville, NJ, United States. 4Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, Netherlands. 5Fundació Institut Universitari per a la Recerca a L’Alcúdia Primaria de Salut Jordi Gol i Gil (IUPASG), Barcelona, Spain. 6Department of Biostatistics, Feeding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States. 7Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, United States. 8New York Presbyterian Hospital, New York, NY, United States.

Objectives: Background incidence rates are routinely used in safety evaluations to evaluate an association of an exposure and outcome. Systematic research on sensitivity of rates to the choice of the study parameters is lacking.

Materials and Methods: We used 12 data sources to systematically examine the influence of age, race, sex, database, time-at-risk, season and year, prior observation and clean window on incidence rates using 15 adverse events of special interest for COVID-19 vaccines as an example. For binary comparisons we calculated incidence rate ratios and performed random-effect meta-analysis.

Results: We observed a wide variation of background rates that goes well beyond age and database effects previously observed. While rates vary up to a factor of 1,000 across age groups, even after adjusting for age and sex, the study showed residual bias due to the other parameters. Rates were highly influenced by the choice of anchoring (e.g., health visit, vaccination, or arbitrary date for the time-at-risk start). Anchoring on a healthcare encounter yielded higher incidence rate comparing to a random date, especially for short time-at-risk. Incidence rates were highly influenced by the choice of the database (varying by up to a factor of 100), clean window choice and time-at-risk duration, and less so by secular or seasonal trends.
• How Often: Large scale characterization of incidence of outcomes following drug exposure

• Pre-Symposium
 – Draft protocol
 – Develop and evaluate phenotypes
 – Gathered research questions from OHDSI community
 – Release analysis package that has all the targets and outcomes of interest

• During Symposium (October 2023)
 – Execute How Often Analysis Package across OHDSI Network
 – Deploy viewer to allow for exploration of results
 – Collaborate on appropriate use of evidence
 • How to ensure reliability of results?
 • How to improve user interface to disseminate results?
 • What have we learned that can fill evidence gaps and improve decision making?
OHDSI Symposium October 2023

Create Phenotypes
Design Protocol + Analysis
Network execution

Develop Interface
Interpret Results

Target Cohorts
1. General Population
2. Important Indications
3. Drug Classes

Outcome Cohorts
1. Adverse events of special interest
2. Designated medical events
3. Indication outcomes
4. Side effects of Drugs

Stratification factors:

Publish methodological findings
Publish clinical findings
Preliminary Results

- **6 Different Studies**
 - More than 20 different research questions
- **265 Different Phenotypes**
- **16 databases**
- **54 million Incidence Rates Generated!**
 - Stratified by age, gender, index year, and database

All results are publicly available at https://results.ohdsi.org/
Preliminary Results

- All results are publicly available at https://results.ohdsi.org/

<table>
<thead>
<tr>
<th>Name</th>
<th>Incidence of hundreds of outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>How Often Andreas</td>
<td>Incidence of hundreds of outcomes</td>
</tr>
<tr>
<td>How Often Azza</td>
<td>Incidence of hundreds of outcomes</td>
</tr>
<tr>
<td>How Often Evan</td>
<td>Incidence of hundreds of outcomes</td>
</tr>
<tr>
<td>How Often George</td>
<td>Incidence of hundreds of outcomes</td>
</tr>
<tr>
<td>How Often Gowza</td>
<td>Incidence of hundreds of outcomes</td>
</tr>
<tr>
<td>How Often Joel</td>
<td>Incidence of hundreds of outcomes</td>
</tr>
<tr>
<td>How Often overall</td>
<td>Incidence of hundreds of outcomes</td>
</tr>
</tbody>
</table>
Results we will present today

- How Often Azza (Azza)
- How Often George (Cindy)
- How Often x Clinicaltrials.gov (Elise)
How Often Azza
How Often George

“Does Indication Matter?”
Background and Research Question

- Previous OHDSI work has shown that incidence estimates are quite sensitive to a range of factors, including age, sex, calendar time, indexing event, and database.
- Some drugs can be indicated to target multiple diseases — ex, SGLT2 inhibitors for both Type II diabetes and left heart failure.
- It is possible that the incidence of different health outcomes could differ by indication; if that is the case, then what is the extent of the variation?
Method (The Big Picture)

• Calculate incidence rates for various health outcomes across 12 different drug classes, stratified by indication
• Compare incidence rates for outcomes across the different indications
• Additionally stratify results by age and sex
Method (The Details)

- Analysis was conducted in October 2023 on 13 databases
- Study Design:
 - Target cohorts: First occurrence of drug exposure
 - Outcome cohorts: 73 different outcomes (defined in the OHDSI phenotype library)
 - Time at risk: 1 day to 365 day after cohort start (Intent to treat)
 - Stratifications: Age and gender

Incidence Rate = \[
\frac{\text{# persons in the target cohort who have new outcome occurrence during the time-at-risk}}{\text{person-time-at-risk for persons in the target cohort with time at risk}}
\]
Method

<table>
<thead>
<tr>
<th>Drug class/bioactivity</th>
<th>Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta Blockers</td>
<td>1) hypertension, 2) heart failure, 3) acute myocardial infarction</td>
</tr>
<tr>
<td>Cephalosporins</td>
<td>1) Urinary tract infection, 2) pneumonia</td>
</tr>
<tr>
<td>Calcium Channel Blockers</td>
<td>1) Hypertension</td>
</tr>
<tr>
<td>DPP-4 Inhibitors</td>
<td>1) Type 2 diabetes mellitus</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>1) Urinary tract infection, 2) pneumonia</td>
</tr>
<tr>
<td>GLP-1 antagonists</td>
<td>1) Type 2 diabetes mellitus, 2) obesity</td>
</tr>
<tr>
<td>IL-23 Inhibitors</td>
<td>1) Psoriasis</td>
</tr>
<tr>
<td>JAK inhibitors</td>
<td>1) Rheumatoid arthritis, 2) Ulcerative colitis</td>
</tr>
<tr>
<td>SGLT2 Inhibitors</td>
<td>1) Type 2 diabetes mellitus, 2) heart failure</td>
</tr>
<tr>
<td>Thiazide Diuretics</td>
<td>1) Hypertension</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>1) Urinary tract infection, 2) pneumonia</td>
</tr>
<tr>
<td>TNF-alpha inhibitors</td>
<td>1) Rheumatoid arthritis, 2) Psoriatic Arthritis, 3) Crohns disease, 4) Ulcerative colitis, 5) Psoriasis</td>
</tr>
</tbody>
</table>

Target cohorts: 12 Drug classes, nested by indication
Method

Outcomes Cohort examples (73 total)

Cardiovascular
• 3 and 4-point major adverse cardiovascular event (MACE) outcomes
• Cardiac death
• Torsades de Pointes
• Hospitalization with heart failure events

Neurologic
• Stroke
• Headache
• Guillen-Barre Syndrome (GBS)

Gastrointestinal
• Abdominal Pain
• Acute Liver Injury
• Diarrhea
• GI Bleed
Analysis

• Random effect meta-analysis of incidence rates across the 13 databases

• For drug classes with >1 indication: Fixed-effect moderators model to evaluate whether incidence rates differed across indications
 – For outcomes where incidence rates by indication were significantly different (p < 0.05), we found the standard deviation of the effect estimates

• R metafor package (rma)
Results

- 77,631 total incidence rates calculated
- 8 different drug classes had at least 2 indications

<table>
<thead>
<tr>
<th>Drug class</th>
<th># of Indications</th>
<th>Differing incidence rates across indications (F statistic p val <0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta Blockers</td>
<td>3</td>
<td>61/73 (83.5%)</td>
</tr>
<tr>
<td>Cephalosporins</td>
<td>2</td>
<td>51/73 (69.9%)</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>2</td>
<td>63/73 (86.3%)</td>
</tr>
<tr>
<td>GLP-1 antagonists</td>
<td>2</td>
<td>3/73 (4.1%)</td>
</tr>
<tr>
<td>JAK inhibitors</td>
<td>2</td>
<td>15/73 (20.5%)</td>
</tr>
<tr>
<td>SGLT2 Inhibitors</td>
<td>2</td>
<td>55/73 (75.3%)</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>68/73 (93.1%)</td>
</tr>
<tr>
<td>TNF-alpha inhibitors</td>
<td>5</td>
<td>26/73 (35.6%)</td>
</tr>
</tbody>
</table>
Zooming in on Beta Blockers...

Incidences Rate by Beta Blocker Indication and Data Source

Data Source
- Epic Legacy CUMC MERGE
- France DA
- IBM CCAE
- IBM MCDG
- IBM MDCR
- LPD Belgium
- LPD Italy
- LPDAU
- Optum EHR
- OPTUM Extended SES
- PharMetrics
- STARR

Drug Indication
- Hypertension
- Left Heart Failure
- Acute MI
Zooming in on Beta Blockers...

Incidence Rate by Beta Blocker Indication and Data Source

- Acquired Pure Red Cell Aplasia
- Acute Hepatic Failure (viral hepatitis and alcoholic hepatic failure)
- Acute Kidney Injury (AKI)
- Acute Liver Injury (viral hepatitis and alcoholic hepatic failure)
- Acute Myocardial Infarction Including Its Complications
- All events of Acute Liver Injury
- Anaphylaxis
- Angiodysplasia
- Aplastic Anemia
- Autonomic/Adrenergic Events
- Autoimmune hemolytic anemia
- Bleed/Coagulation
- Beta Ray
- Bone Fracture
- Cardiovascular-related Mortality
- CV Events (ischemic stroke, hemorrhagic stroke, heart failure, acute MI or sudden cardiac death)
- Deep Vein Thrombosis (DVT)
- Diabetes Events
- Disseminated Intravascular Coagulation
- Drug Rash with Eosinophilia and Systemic Symptoms (DRESS)
- Drug Indication
- Earliest event of Acute Hepatic Failure
- Exema events
- Hypertension
- Hypertension, Left Heart Failure, Acute MI
- Hypoglycemia
- Immune Thrombocytopenia (ITP)
- Infection
- Malignancy
- Myasthenia
- Nausea/Epididymitis
- Neurologic Side Effects
- Sudden Vision Loss
- Transient Ischemic Attack
- Weights
- Weight Gain
- Weight Loss

Data Source
- Epic Legacy CUMC MERGE
- France DA
- IBM CCAE
- IBM MCD
- IBM MDCR
- LPD Belgium
- LPD Italy
- LPDAU
- Optum EHR
- OPTUM Extended SES
- PharMetrics
- STARR
Zooming in on Beta Blockers...

• 3 Highest SD (rates are different between indications):
 – Hospitalization with heart failure (SD = 4.17)
 – 4-point MACE (4)
 – Total CV disease events (4)

• 3 Lowest SD (rates are similar across indications):
 – Gout (SD = 0.35)
 – Bone Fracture (SD = 0.58)
 – Cough (SD = 0.59)
What about stratifying by sex?

![Graph showing Incidence Rate by Beta Blocker Indication and Data Source, Stratified By Gender](image_url)

Data Source
- Epic Legacy CUMC MERGE
- France DA
- IBM CCAE
- IBM MDCD
- IBM MDCR
- LPD Belgium
- LPD Italy
- Optum EHR
- OPTUM Extended SES
- PharMetrics
- STARR

Drug Indication
- Acute MI
- Hypertension
- Left Heart Failure
- Acute MI
What about stratifying by age?

Incidence Rate by Beta Blocker Indication and Data Source, stratified by Age

Data Source
- Epic Legacy CUMC MERGE
- France DA
- IBM CCAE
- IBM MDCD
- IBM MDCH
- LPD Belgium
- LPD Italy
- Optum EHR
- OPTUM Extended SES
- PharMetrics
- STARR
Key Takeaways & Next Steps

• Meta-analyzed incidence rates for beta blockers were sensitive to stratifications by indications
 – They are preserved even when we stratify by age and gender
• Trimethoprim was most sensitive to stratification by indication, and GLP-1 least sensitive
• For some health outcomes, it may be important to nest exposures within the different indications