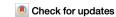


npj | digital medicine


Article

Published in partnership with Seoul National University Bundang Hospital

https://doi.org/10.1038/s41746-025-01846-1

Unlocking efficiency in real-world collaborative studies: a multi-site international study with one-shot lossless GLMM algorithm

Jiayi Tong^{1,2,3} ⊠, Jenna M. Reps^{4,5,6}, Chongliang Luo⁷, Yiwen Lu^{1,2}, Lu Li^{1,2}, Juan Manuel Ramirez-Anguita⁸, Milou T. Brand⁹, Scott L. DuVall^{10,11}, Thomas Falconer¹², Alex Mayer Fuentes¹³, Xing He^{14,15}, Michael E. Matheny^{16,17}, Miguel A. Mayer⁸, Bhavnisha K. Patel^{16,17}, Katherine R. Simon^{16,17}, Marc A. Suchard^{11,18}, Guojun Tang¹⁹, Benjamin Viernes¹¹, Ross D. Williams⁶, Mui van Zandt⁹, Fei Wang²⁰, Jiang Bian^{14,15}, Jiayu Zhou²¹, David A. Asch^{22,23} & Yong Chen^{1,2,23} ⊠

Jiayi (Jessie) Tong
Assistant Professor
Department of Biostatistics
Johns Hopkins Bloomberg School of Public Health
September 16, 2025, OHDSI Community-Call

A **Primary Challenge** in Multi-site International Study

Individual Patient-level Data (IPD) cannot be shared across sites

- Regulatory Approval Processes
- Country-Specific Laws (e.g., HIPAA in USA, PIPEDA in Canada)
- Institutional Policies Data Sharing Restrictions

Privacy-Preserving Federated Learning Algorithms

- Enables fitting statistical models in a federated manner
- Requires summary statistics, instead of IPD
- Ensures data privacy and security

Two Ideal Properties of Federated Learning Algorithms

To date, only a few algorithms have successfully achieved both lossless and one-shot properties simultaneously:

- <u>Linear Regression (i.e., Chen et al., 2006, IEEE)</u>
- <u>Linear</u> mixed models (i.e., Luo et al., 2022, Nature Communications)

Identical Results

Lacalaca

No accuracy loss due to data sharing constraints

Only a single round of communication is needed

Challenges in Real-world Data

Non-continuous outcomes

- Binary outcome
- Categorical outcome
 - Count outcome

• ..

Between-site heterogeneity

We need Federated Learning Algorithms for Generalized Linear Mixed Model (GLMM)

Existing Works on Federated Learning Algorithms for GLMM

Luo et al, 2022, JAMIA

Fed-GLMM: A Privacy-Preserving and
Computation-Efficient Federated Algorithm for
Generalized Linear Mixed Models to Analyze
Correlated Electronic Health Records Data

Zhiyu Yan¹, Kori S. Zachrison^{2,3}, Lee H. Schwamm^{1,3,4}, Juan J. Estrada¹, Rui Duan⁵

¹Department of Neurology, Massachusetts General Hospital, Boston, MA, USA

²Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA

³Harvard Medical School, Boston, MA, USA

⁵Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA

Zhu et al, 2020, Bioinformatics

-114 ct 41, 2020, *Droingon*

Yan et al, 2022, arxiv

One-shot

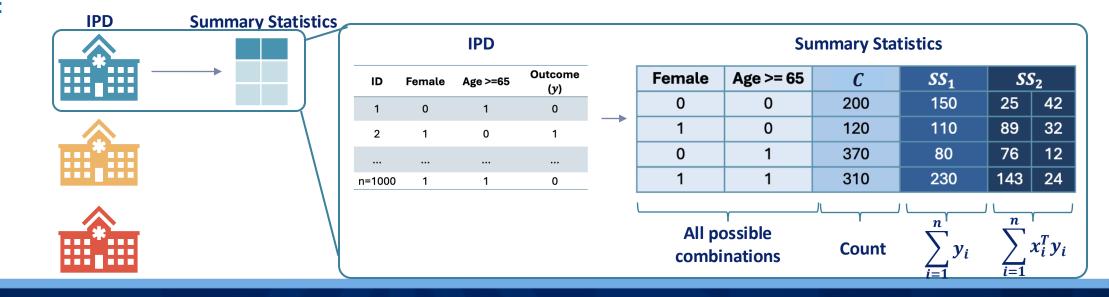
Lossless

X

Communication Round

Iterative (500~1000 rounds)

< 5 rounds

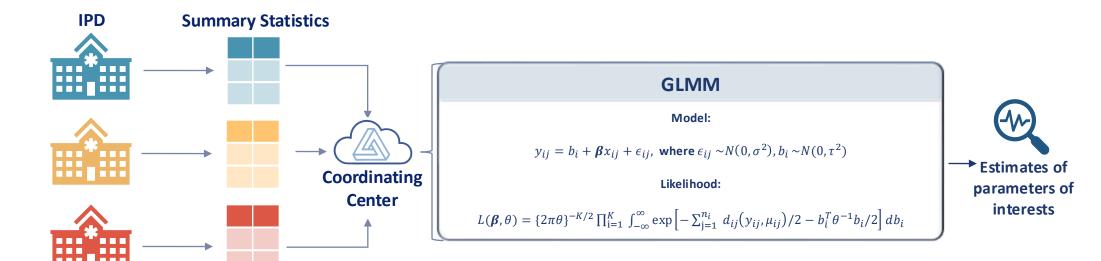

1 or 2 rounds*
(Depends on initialization)

1 round

Proposed Method – COLA-GLMM

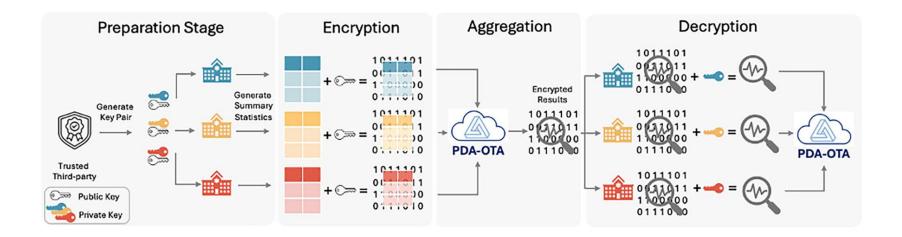
Collaborative One-shot Lossless Algorithm for Generalized Linear Mixed Model

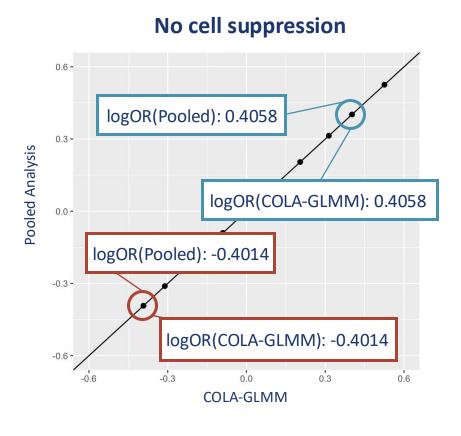
- Suppose that a **common** set of covariates are available at all collaborating sites.
- The covariates have been **standardized into categorical variables**.
- Pipeline:

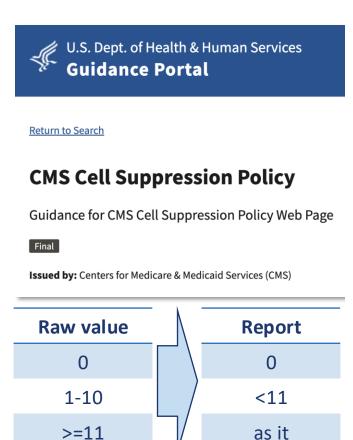


Proposed Method – COLA-GLMM

Collaborative One-shot Lossless Algorithm for Generalized Linear Mixed Model

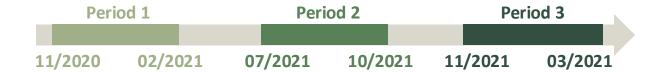

- Suppose that a common set of covariates are available at all collaborating sites.
- The covariates have been **standardized into categorical variables**.




Homomorphic Encryption Enhanced COLA-GLMM

- Under semi-trusted environment:
 - while both data contributors and the coordinating center adhere to the protocol without engaging in malicious actions, the coordinating center may still attempt to derive insights from passively obtained data, indicating a curiosity in extracting information.

Simulation Study – Compare Pooled Analysis and COLA-GLMM



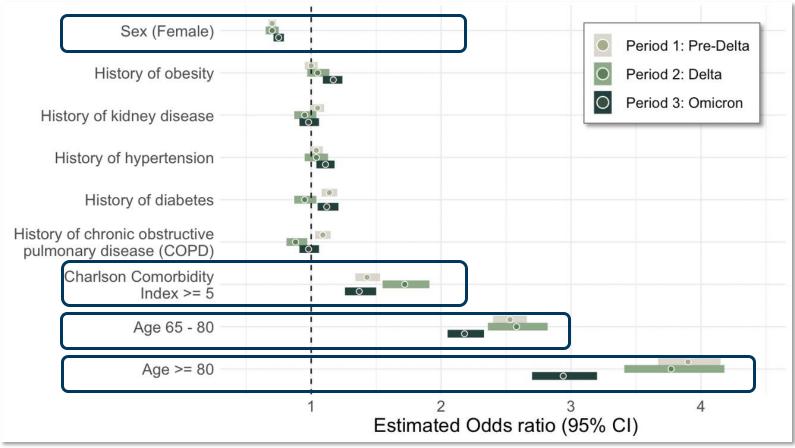
Real-world Case Study

• Scientific Question:

Identify COVID-19 mortality **risk factors** over **three time periods** among hospitalized patients

Study Period:

Databases (3 countries):


- Optum® de-identified Electronic Health Record Dataset (Optum EHR);
- Optum's Clinformatics® Data Mart (CDM or Clinformatics®);
- IQVIA Hospital CDM;
- University of Florida Health;
- Department of Veterans Affairs;
- Integrated Primary Care Information (IPCI), The Netherlands;
- Columbia University Irving Medical Center (CUIMC);
- Parc Salut Mar Barcelona (PSMAR), Spain.

Inclusion criteria:

· Patients aged 18 years and older

Real-world Case Study Results

- Sex (female):
 - Reference group: Male
 - Female patients consistently exhibit a lower risk of mortality compared to males across all periods
- Charlson Comorbidity Index (CCI):
 - Reference group: CCI < 5
 - Higher CCI scores are statistically associated with an increased risk of mortality.
- Age:
 - Reference group: Age < 65
 - Higher age indicates significantly increased risk of mortality

Summary – COLA-GLMM

Collaborative One-shot Lossless Algorithm for Generalized Linear Mixed Model

- Lossless One-Shot
- Summary Statistics Only
- Heterogeneity-Aware
- Scalable, Applicable, and Implementation-Ready in OHDSI Network

PDA R Package: 13300+ downloads since 2020

PDA Github Page: https://github.com/Penncil/pda

PDA website: https://pdamethods.org/

PDA-OTA: https://pda-ota.pdamethods.org/

Acknowledgements

- Yong Chen, University of Pennsylvania
- David A. Asch, University of Pennsylvania
- Jenna Reps, Janssen Research and Development
- Chongliang Luo, Washington University in St. Louis
- Yiwen Lu, University of Pennsylvania
- Milou T. Brand, Real World Solutions, IQVIA
- Scott L. DuVall, VA Informatics and Computing Infrastructure
- Thomas Falconer, Columbia University
- Juan Manuel Ramirez-Anguita, Hospital del Mar Research Institute (HMRIB) •
- Miguel A. Mayer, Hospital del Mar Research Institute (HMRIB)
- Michael E Matheny, VA Informatics and Computing Infrastructure
- Alex Mayer Fuentes, Parc Taulí Hospital Universitari

- Xing He, University of Florida
- Bhavnisha K Patel, VA Informatics and Computing Infrastructure
- Katherine R Simon, VA Informatics and Computing Infrastructure
- Marc A. Suchard, University of California, Los Angeles
- Guojun Tang, University of Calgary
- Benjamin Viernes, VA Informatics and Computing Infrastructure
- Fei Wang, Weill Cornell Medicine
- Ross D. Williams, Erasmus University Medical Center
-) Mui van Zandt, Real World Solutions, IQVIA
- Jiang Bian, University of Florida
- Jiayu Zhou, Michigan State University

Correspondence to:

- **Jessie Tong**, jtong20@jhu.edu
- Yong Chen, ychen123@upenn.edu