

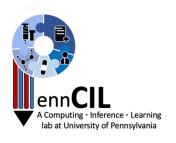
Department of Biostatistics, Epidemiology and Informatics

The Fine Art of Tolerance: Robustify P-value Calibration in Observational Studies with Partially Valid Negative Control Outcomes

Bingyu Zhang, PhD Candidate, University of Pennsylvania

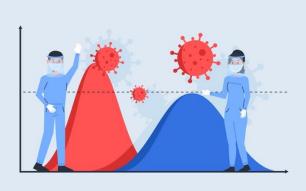
Advisor: Dr. Yong Chen

OHDSI Early-Stage Researchers Community Call, November 25, 2025



Motivation: Bias in Real-World Data

- Vaccine effectiveness
- SARS-CoV-2 infection and Long COVID
- Cancer therapies
- Residual Bias in Observational Research
 - Unmeasured confounding
 - Measurement error
 - Selection bias
 - Missing data
 - •



Negative Controls: Current Frameworks

- Negative control outcome (NCO)
 - A clinical outcome that should not be causally affected by the treatment of interest
 - share similar sources of bias as the primary outcome
- Bias detection
- Bias correction

Statistics in Medicine

Research Article

Received 12 November 2012,

Accepted 3 July 2013

Published online 30 July 2013 in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/sim.5925

Interpreting observational studies: why empirical calibration is needed to correct *p*-values

Martijn J. Schuemie, ^a,b* \dagger Patrick B. Ryan, ^b,c William DuMouchel, ^b,d Marc A. Suchard ^b,e and David Madigan ^b,f

Empirical confidence interval calibration for population-level effect estimation studies in observational healthcare data

Martijn J. Schuemie^{a,b,1}, George Hripcsak^{a,c,d}, Patrick B. Ryan^{a,b,c}, David Madigan^{a,e}, and Marc A. Suchard^{a,f,g,h}

*Observational Health Data Sciences and Informatics, New York, NY 10032; *Epidemiology Analytics, Janssen Research & Development, Titusville, NJ 08560; *Department of Biomedical Informatics, Columbia University, New York, NY 10032; *Medical Informatics Services, New York-Presbyterian Hospital, New York, NY 10032; *Department of Statistics, Columbia University, New York, NY 10027; *Department of Biomathematics, University of California, Los Angeles, CA 90095; *Department of Biostatistics, University of California, Los Angeles, CA 90095; *Department of Human Genetics, University of California, Los Angeles, CA 90095

Example of Implementation

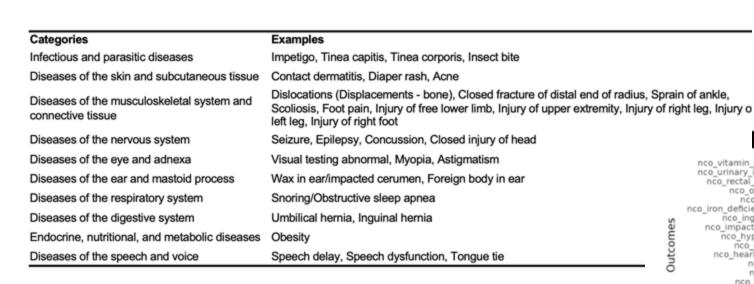
- Exposure: COVID-19 vaccination
- Outcome: SARS-CoV-2 infection

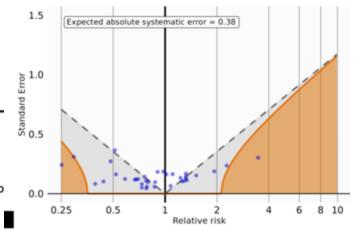
Annals of Internal Medicine

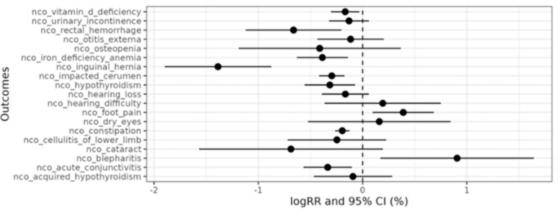
ORIGINAL RESEARCH

Real-World Effectiveness of BNT162b2 Against Infection and Severe Diseases in Children and Adolescents

Qiong Wu, PhD*; Jiayi Tong, MS*; Bingyu Zhang, MS; Dazheng Zhang, MS; Jiajie Chen, PhD; Yuqing Lei, MS; Yiwen Lu, BS; Yudong Wang, PhD; Lu Li, BA; Yishan Shen, MS; Jie Xu, PhD; L. Charles Bailey, MD, PhD; Jiang Bian, PhD; Dimitri A. Christakis, MD, MPH; Megan L. Fitzgerald, PhD; Kathryn Hirabayashi, MPH; Ravi Jhaveri, MD; Alka Khaitan, MD; Tianchen Lyu, MS; Suchitra Rao, MBBS, MSCS; Hanieh Razzaghi, PhD, MPH; Hayden T. Schwenk, MD, MPH; Fei Wang, PhD; Margot I. Gage Witvliet, PhD; Eric J. Tchetgen Tchetgen, PhD; Jeffrey S. Morris, PhD†; Christopher B. Forrest, MD, PhD†; and Yong Chen, PhD†







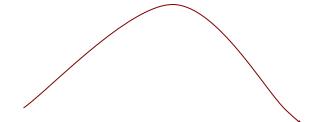
But... NCOs May Be Invalid

- Current frameworks assume all NCOs are valid
 - Normal-normal (N-N) model

$$y_i \sim N(\theta_i, s_i^2)$$

 $\theta_i \sim N(\mu, \sigma^2)$

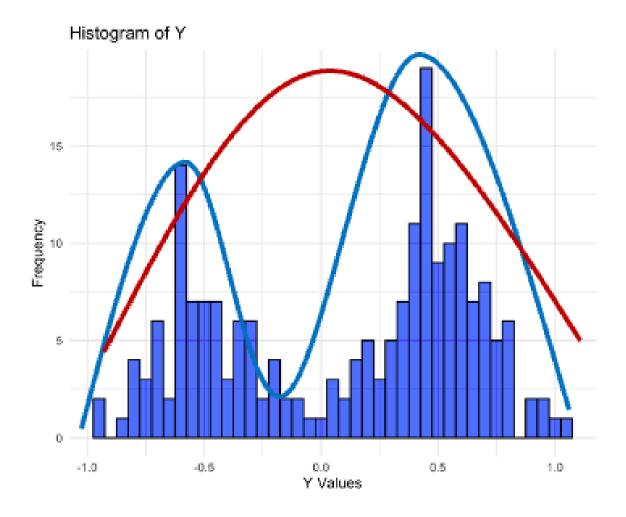
$$\theta_i \sim N(\mu, \sigma^2)$$



- In real-world scenarios, some NCOs may actually be invalid
 - Different confounding structures, data quality issues, coding practices, ...
- This can bias bias-correction!

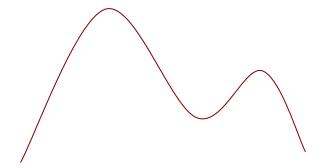
Why a Single Normal Fails

- Biased mean
- Larger variance



Proposed Method: Robustify P-value Calibration

- ► (A1) Two cluster mixture model
 - Relax the normality assumption
 - Mixture normal-normal (MN-N) model
- ► (A2) Majority rule
 - >50% NCOs are valid



$$y_{i} \sim N(\theta_{i}, s_{i}^{2})$$

$$\theta_{i} \sim N(\mu, \sigma^{2})$$

$$y_{i} \sim N(\theta_{i}, s_{i}^{2})$$

$$\theta_{i} \sim \pi \cdot N(\mu_{1}, \sigma_{1}^{2}) + (1 - \pi) \cdot N(\mu_{2}, \sigma_{2}^{2})$$

$$\pi > 0.5$$

Mixture Model Framework

- For each NCO, observe estimated treatment effect y_i with standard error s_i
- Assume each NCO comes from one of the following two distributions:
 - Valid NCOs (true nulls)

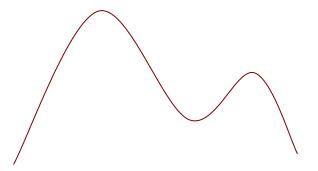
$$y_i \sim N(\mu_1, \sigma_1^2 + s_i^2)$$

Invalid NCOs

$$y_i \sim N(\mu_2, \sigma_2^2 + s_i^2)$$

$$\begin{cases} f(y_i) = \pi \cdot N(y_i | \mu_1, \sigma_1^2 + s_i^2) + (1 - \pi) \cdot N(y_i | \mu_2, \sigma_2^2 + s_i^2) \\ \pi > 0.5 \end{cases}$$

• Estimate parameters $(\pi, \mu_1, \mu_2, \sigma_1^2, \sigma_2^2)$ using EM algorithm



Calibrated p-value

 Using the estimated valid null distribution, for an effect estimate from a new drug-outcome pair, the two-sided p-value is then

$$p_{cal} = 2 \cdot \Phi \left(-\frac{|y_{n+1} - \hat{\mu}_1|}{\sqrt{\hat{\sigma}_1^2 + s_{n+1}^2}} \right)^{\text{(valid)}}$$
 Estimated mean of majority NCOs (valid)

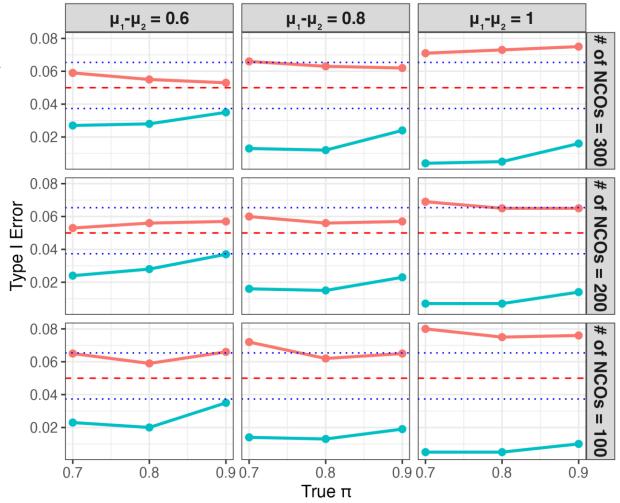
Φ is the cumulative distribution function of the standard normal distribution

Simulation

- Proportion of valid NCO π : 0.7, 0.8, 0.9
- ► Number of NCOs *n*: 100, 200, 300
- ► Separation between valid and invalid means $\mu_1 \mu_2$: 0.6, 0.8, 1.0

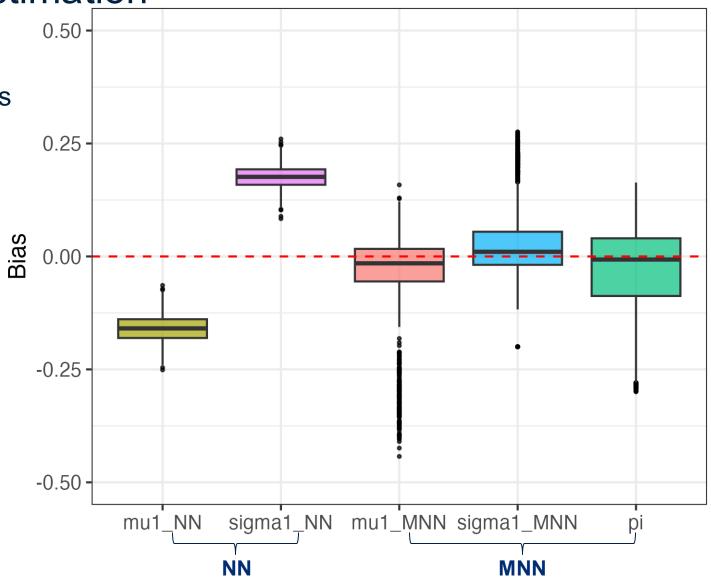
Simulation: Type I Error

MNN achieved the nominal type I error



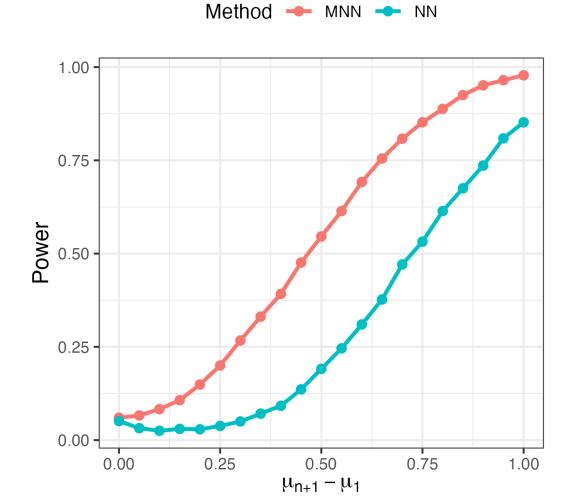
Simulation: Parameter Estimation

MNN produced less biased estimates



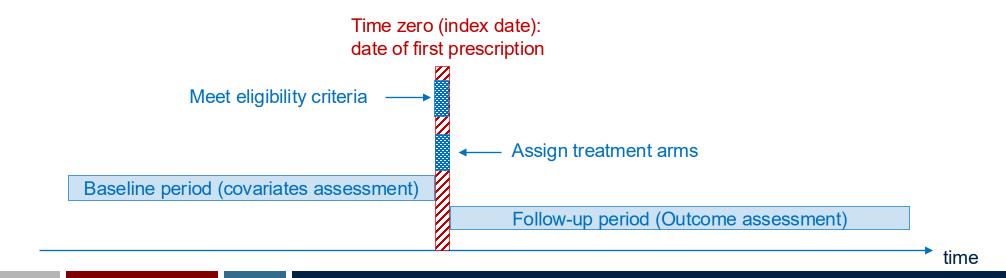
Simulation: Power

MNN had higher power

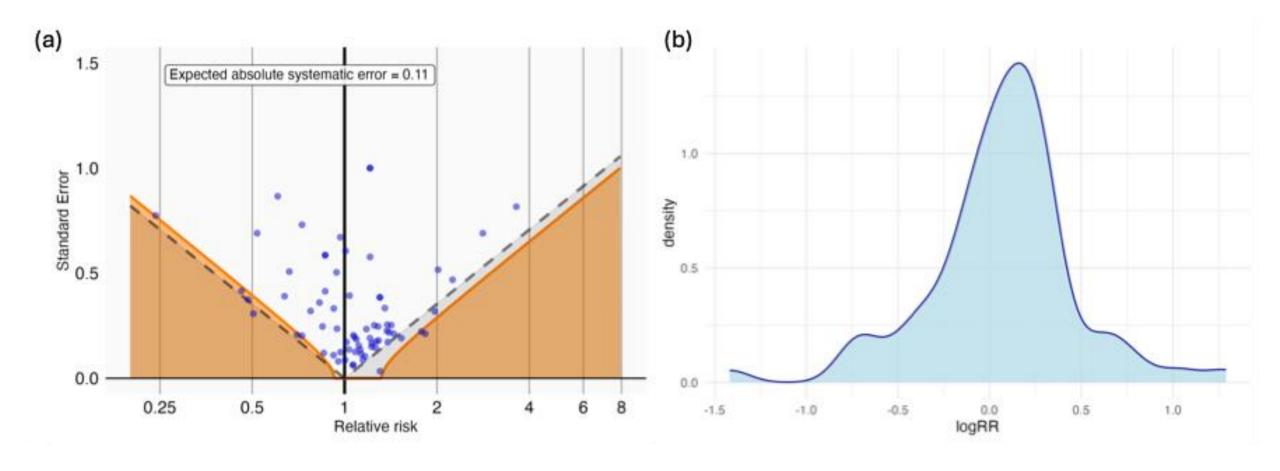


Real-World Use Case

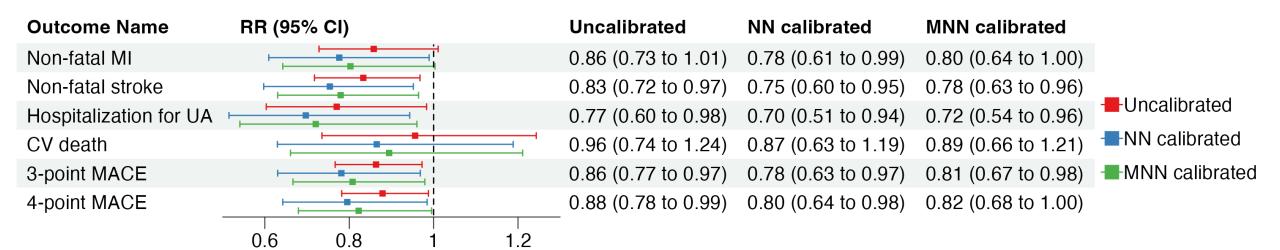
- Data source: Penn Medicine EHR data
- Population: Patients with type 2 diabetes
- Treatment: GLP-1 receptor agonists
- Comparison: DPP4 inhibitors
- Outcomes: six cardiovascular outcomes
- Statistical analysis: large-scale propensity score matching + modified Poisson regression model



Distribution of NCOs



Treatment Effectiveness



- MNN: smaller bias correction, narrower CI
- GLP1RAs have protective cardiovascular effects compared to DPP4is

Conclusion

- RWD enables large-scale observational research but is vulnerable to residual bias
- NCOs are essential tools but their validity cannot be guaranteed
- We propose a robust two-cluster model that:
 - Distinguishes valid from invalid NCOs
 - Enables bias correction even with partially invalid controls
 - Improves the reliability of p-values and confidence intervals

Acknowledgements

- Dazheng Zhang
- Huiyuan Wang
- Wenjie Hu
- Qiong Wu
- Chongliang Luo
- Lu Li
- Tsai Hor Chan

- Yudong Wang
- Yuru Zhu
- Martijn Schuemie
- Patrick Ryan
- George Hripcsak
- Marc Suchard
- Yong Chen

Contact:

Dr. Yong Chen: ychen123@pennmedicine.upenn.edu

Bingyu Zhang: bingyuz7@sas.upenn.edu

