

Innovation and Education Brainstorm

OHDSI Community Call
Jan. 27, 2026 • 11 am ET

Upcoming Community Calls

Date	Topic
Jan. 27	Education and Innovation Brainstorm
Feb. 3	2026 Workgroup Objectives & Key Results, Part 1
Feb 10	2026 Workgroup Objectives & Key Results, Part 2

Three Stages of The Journey

Where Have We Been?

Where Are We Now?

Where Are We Going?

OHDSI Shoutouts!

Congratulations to the team of **George Hripcsak, Marc Suchard, Martijn Schuemie and Patrick Ryan** on the recent publication of **Trust in Observational Research** in the *Journal of American College of Cardiology (JACC)*.

ARTICLE IN PRESS

JACC

© 2026 THE AUTHORS. PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY-NC-ND LICENSE (<http://creativecommons.org/licenses/by-nc-nd/4.0/>).

VOL. ■ NO. ■ 2026

VIEWPOINT

Trust in Observational Research

George Hripcsak, MD, MS,^a Marc A. Suchard, MD, PhD,^{b,c} Martijn J. Schuemie, PhD,^a Patrick B. Ryan, PhD^d

Observational research promises to add evidence where randomized trials are under-powered, unethical, unrealistic, or—most often—simply too resource intensive to meet the huge demand. Clinical guidelines that are intended to be evidence-based are forced to rely on expert opinion,¹ and of the tens of thousands of side effects that could result from each of the thousands of drugs on the market, only a fraction of these potential side effects has been formally studied. The emergence of enormous databases, increasing computing power, and new analytic methods should propel observational research forward, but researchers and the public have become increasingly aware of the unreliability of published real-world evidence.^{2,3}

For observational research to reach its potential, we must recognize where the challenges are and take concrete steps to address them. We focus here on observational research that tests clinical hypotheses with an intent to publish in top clinical journals and affect the care of millions of patients. We recognize that other observational research is hypothesis generating and may be treated differently.

Observational research can be roughly divided into several components: picking an appropriate and well-formulated hypothesis, developing a proper study design, accessing data that are relevant and accurate, executing the study rigorously, and interpreting the results correctly. Several initiatives have identified concrete steps we can take and criteria we can use to improve reliability. For example, the Observational Health Data Sciences and Informatics (OHDSI) Large-scale Evidence Generation and

Evaluation across a Network of Databases (LEGEND) framework⁴ identifies 10 criteria for improving the reliability of observational research and was used in published cardiovascular safety and effectiveness studies.⁵ The criteria can be grouped as openness and verification, shown in Figure 1. Openness is well-known but poorly followed. The study protocol must be prespecified and published, all study software and clinical definitions must be made available,

“The study protocol must be prespecified and published, all study software and clinical definitions must be made available, all diagnostics must be shared before unblinding the results, and all results must be published in some format.”

all diagnostics must be shared before unblinding the results, and all results must be published in some format. Verification is through formal diagnostics that assess every component of the process, including data quality, accuracy of the definitions of outcomes and key covariates, analytic diagnostics such as achieved balance in confounding adjustment, a test for consistency among multiple databases, and large-scale negative control subjects to substantiate the claim of minimal bias. The Sentinel Initiative provides an overlapping set of system requirements, focusing on openness, data properties, and standardized tools.⁶ It has been applied extensively in the work of the U.S.

Three Stages of The Journey

Where Have We Been?

Where Are We Now?

Where Are We Going?

Upcoming Workgroup Calls

Date	Time (ET)	Meeting
Wednesday	9 am	Oncology Outreach/Research Subgroup
Wednesday	10 am	Surgery and Perioperative Medicine
Wednesday	10 am	Women of OHDSI
Wednesday	12 pm	Latin America
Thursday	9 am	Africa Chapter
Thursday	11 am	Perinatal and Reproductive Health
Friday	10 am	GIS – Geographic Information System
Friday	11:30 am	Steering
Monday	9 am	Vaccine Vocabulary
Monday	10 am	Healthcare Systems Interest Group
Tuesday	10 am	CDM Survey

2026 Global Symposium

2026 OHDSI Global Symposium Call for Plenary Sessions

Symposium plenaries provide opportunities to share innovative, community-developed content to empower researchers to generate reliable real-world evidence. The community is currently seeking proposals for our #OHDSI2026 plenaries. These sessions will be 60 minutes in duration and must touch on at least two of following pillars of our community:

- Open community data standards
- Methodological research
- Open-source development
- Clinical applications

Plenary sessions must also involve three or more on-stage participants across at least two organizations. Sessions may include a combination of keynote talks, panel discussions, interactive activities, and more. We strongly encourage using multiple formats and synthesizing completed research, current perspectives and future calls-to-action to maximize community engagement.

The deadline for proposal submissions is January 30, 2026. Please use the link below to submit your proposal by answering the following questions:

- Name(s) of plenary session organizers:
- Your email address(es):
- Short (2,500 character max) description / abstract of your proposed session:
- Which pillars are you targeting:
- One sentence “pitch” of your session to excite the community:
- Names and roles of individuals who have tentatively agreed to participate in your session:

**Deadline to submit
proposals for #OHDSI2026
plenaries or tutorials is
Jan. 30, 2026!**

Who We Are ▾ Updates & News ▾ Standards Software Tools ▾ Network Studies ▾ Community Forums ▾ Education ▾ New To OHDSI? ▾
Community Calls ▾ Past Events ▾ Workgroups ▾ Tutorials 2025 'Our Journey' Annual Report Current Events ▾ Support & Sponsorship
2025 Global Symposium ▾ 2025 APAC Symposium ▾ GitHub YouTube X/Twitter LinkedIn Newsletters ▾

2026 OHDSI Global Symposium

Oct. 20-22 • New Brunswick, N.J. • Hyatt Regency Hotel

2026 OHDSI Global Symposium Call for Tutorials

Tutorial sessions aim to deliver educational content, led by community members who wish to train our global collaborators on scientific, technical, and other skills that can support advancing OHDSI's mission and the effective use of real-world data and the generation and dissemination of reliable real-world evidence. Examples of prior tutorials offered are provided here: <https://www.ohdsi.org/tutorials>.

Tutorial sessions are 4 hours in duration. Registrants for your tutorial will be requested to pay a registration fee. The fees will be used to offset the costs of the symposium and other OHDSI expenses. Sessions may include a combination of talks, interactive activities, and more. We strongly encourage using multiple formats to maximize community engagement. Your session must include at least three people from at least two different organizations.

The deadline for tutorial proposal submissions is January 30, 2026. Please use the link below to submit your proposal by answering the following questions:

- Name(s) of tutorial session organizers:
- Your email address(es):
- Short (2,500 character) description / abstract of your proposed session:
- Names and roles of individuals who have tentatively agreed to participate in your session:

2026 Europe Symposium

The 2026 OHDSI Europe Symposium returns to Rotterdam next year and will be held **April 18-20**.

The deadline for abstract submissions will be Feb. 6, 2026.

2026 Europe Symposium

Time	Symposium Agenda - Monday April 20, 2026	Location
8:00	Registration and Coffee	Queen's Lounge
9:00	Welcome to OHDSI Europe <u>Dr. Renske Los</u> , Department of Medical Informatics, Erasmus MC <u>Dr. Aniek Markus</u> , Department of Medical Informatics, Erasmus MC	Theatre
9:05	Journey of OHDSI <u>Prof. Peter Rijnbeek</u> , Chair Department of Medical Informatics, Erasmus MC	Theatre
9:30	Collaborator Showcase - part 1 Moderated by <u>Dr. Egill Fridgeirsson</u> , Department of Medical Informatics, Erasmus MC	1
10:00	Speed networking	1
10:15	Coffee Break & posters National Nodes	Queen's Lounge
11:15	Collaborator Showcase - part 2 Moderated by <u>Dr. Egill Fridgeirsson</u> , Department of Medical Informatics, Erasmus MC	1
11:45	Dreaming about the OHDSI journey ahead <u>Dr. Patrick Ryan</u> , Vice President, Observational Health Data Analytics, Johnson & Johnson <u>Dr. Renske Los</u> , Department of Medical Informatics, Erasmus MC	1
	12:15 <i>Lunch break & networking & posters/demo's</i> (Early investigator meeting - 13:00-13:45 Queen's Lounge)	La Fontaine & Odyssee Room
	13:45 <i>From dreams to reality</i> <u>OHDSI Titan Award winners</u>	Theatre
	14:30 <i>Propositions for collaboration from the National Nodes</i> <u>National Node leads</u>	Theatre
	14:45 <i>Coffee break & posters/demo's</i>	La Fontaine & Odyssee Room
	16:15 <i>The OH Factor</i> <u>To be announced</u>	Theatre
	17:00 <i>Closing</i>	Theatre
	17:15 <i>Networking reception</i>	Queen's Lounge

ATHENA Survey

Athena user survey

Help us understand how to make Athena better

When you submit this form, it will not automatically collect your details like name and email address unless you provide it yourself.

* Required

1. If you are open to follow-up about your feedback, please provide your email address

Enter your answer

2. How do you use athena.ohdsi.org? *

- Search concepts
- Download current version of vocabularies
- Download previous version of vocabularies
- Other

3. What do you athena.ohdsi.org for? *

- ETL data
- Search concepts to create mappings
- Search concepts for concept sets (value sets, code lists)
- Translate concepts to other languages/find translations
- Use as knowledge graph outside of OMOP CDM
- Other

4. On average, how often do you access athena.ohdsi.org? *

- Every day
- Once a week
- A few times a month
- Once a month
- Once 6 month or less
- Other

5. If there was an Athena API, how would you use it and what would you use it for? *

Enter your answer

6. Anything else you'd like to tell us? *

Enter your answer

You can print a copy of your answer after you submit

Submit

#OHDSISocialShowcase This Week

Tuesday

Maximizing EHR

Semantic Meaning

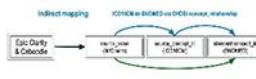
for Rare Diseases

Utilizing a Direct

Mapping Strategy

(Melanie Philofsky, Kathleen R Mullen, Bryan J Laraway, Michael G Kahn, Melissa A Haendel)

Title: Maximizing EHR Semantic Meaning for Rare Diseases Utilizing a Direct Mapping Strategy


PRESENTER: Melanie Philofsky

INTRO

- Many electronic health records (EHRs) provide a clinician-friendly interface terminology that captures the nuances of a patient's diagnosis and observations that cannot be represented in administrative coding systems. When the interface terminology is mapped to ICD & SNOMED, a loss of granularity might occur.

METHODS

- Identified rare diseases using Mondo terminology and 200 most common conditions by unique patient count.
- Mapped the rare and common conditions to SNOMED via the two methods shown below.
- Annotators blindly evaluated the original term against the two SNOMED terms and chose the closer semantic match.

- The direct method from IMO to SNOMED produces the most accurate semantic match (Table 1).
- Table 2: Examples of different results from the 2 mapping methods.

Table 1: Preferred mappings for 1,263 discordant mappings

	Indirect (ICD-10-CM) mapping preferred (Figure 1, top)	Direct IMO mapping preferred (Figure 1, bottom)
Rare disease diagnoses (n=1,200)	93	1107
Top200 disease diagnoses (n=63)	17	46

CONCLUSION

The more direct method of mapping the terminology selected by front-line clinicians ensures that the resulting standard concept more closely captures the intended meaning of the patient-provider interaction.

OHDSI sites that use IMO as the EHR interface terminology should leverage IMO-provided direct mappings into SNOMED rather than the indirect mapping approach supported by the OHDSI concept_relationship table

Take a picture to download the full paper

Table 2: Examples of mapping outcomes. For each example, the preferred mapping is in bold font.

Indirect mapping semantic loss due to poor intermediate (ICD-10-CM) code

IMO Term	Intermediate ICD-10-CM code	Indirect mapping	Standard SNOMED concept
Mesocardia (HC CODE)	Q24.8	Congenital heart disease	Mesocardia
Shone syndrome (HC CODE)	Q24.8	Congenital heart disease	Shone complex
Li-Fraumeni syndrome	Z15.01	Genetic predisposition	Li-Fraumeni syndrome
Gardner's syndrome (HC CODE)	Q87.89	Congenital malformation syndrome	Gardner syndrome
Noonan's syndrome (HC CODE)	Q87.19	Congenital malformation syndromes associated with short stature	Noonan's syndrome

Direct mapping semantic loss due to poor IMO mappings

IMO Term	Intermediate ICD-10-CM code	Indirect mapping	Standard SNOMED concept
Livedoid vasculitis	L95.0	Idiopathic livedo reticularis with summer ulceration	Idiopathic livedo reticularis
Fructose intolerance	E74.10	Fructose metabolism disorder	Intolerance to food

Synonym mappings: No obvious "better" mapping

IMO Term	Intermediate ICD-10-CM code	Indirect mapping	Standard SNOMED concept
Mobitz II	I44.1	Second degree atrioventricular block	Mobitz type II atrioventricular block

No acceptable mappings

IMO Term	Intermediate ICD-10-CM code	Indirect mapping	Standard SNOMED concept
Glucose intolerance	E74.39	Impaired intestinal carbohydrate absorption	Disorder of carbohydrate metabolism
Molar pregnancy (HC CODE)	O02.0	Disorder of product of conception	Hydatidiform mole, benign
Bile duct adenocarcinoma (HC CODE)	C24.0	Primary malignant neoplasm of extrahepatic bile duct	Bile duct proliferation Malignant adenomatous neoplasm
Glomus tumor	D18.00	Hemangioma	Neuroendocrine neoplasm
Levocardia (HC CODE)	Q24.1	Situs inversus with levocardia	Sinistrocardia

Melanie Philofsky¹, Kathleen R Mullen², Bryan J Laraway¹, Michael G Kahn³, Melissa A Haendel²
¹EPAM Systems, ²University of North Carolina at Chapel Hill, ³University of Colorado Anschutz Medical Campus

#OHDSISocialShowcase This Week

Wednesday

Integrative Causal Machine Learning with Digital Twins: Calibration of Treatment Effects via Negative Control Outcomes

(**Yuqing Lei, Huiyuan Wang, Dazheng Zhang, Yiwen Lu, Yong Chen**)

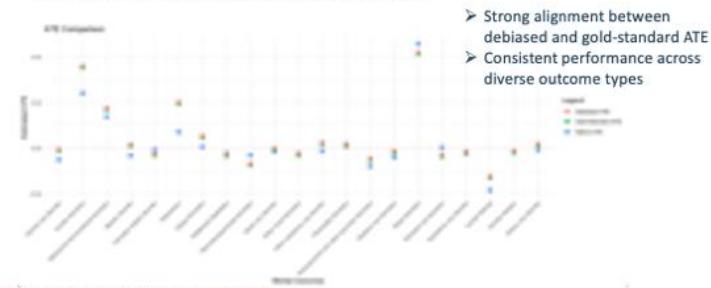
Contact: ychen123@pennmedicine.upenn.edu

Integrative Causal Machine Learning with Digital Twins: Calibration of Treatment Effects via Negative Control Outcomes

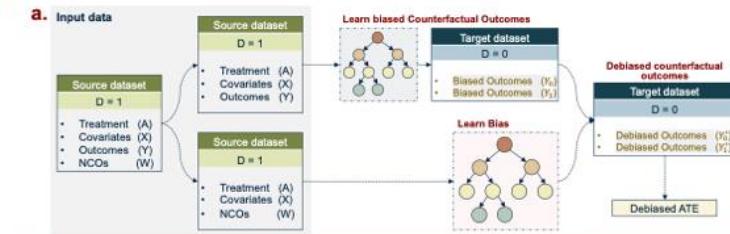
Yuqing Lei^{1,2}, Dazheng Zhang, PhD^{1,2}, Huiyuan Wang, PhD^{1,2}, Yiwen Lu^{1,3} and Yong Chen, PhD^{1,6}

1. The Center for Health Analytics and Synthesis of Evidence (CHASE), University of Pennsylvania, Philadelphia, PA, USA
2. Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
3. The Graduate Group in Applied Mathematics and Computational Science, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
4. Leonard Davis Institute of Health Economics, Philadelphia, PA, USA
5. Penn Medicine Center for Evidence-based Practice (CEP), Philadelphia, PA, USA
6. Penn Institute for Biomedical Informatics (IBI), Philadelphia, PA, USA

Background and Motivation


- Validity-Generalizability Trade-off**
 - High-quality Data** (Valid but Limited)
 - Randomized Controlled Trials (RCTs): randomization ensured validity, but strict inclusion criteria limit generalizability:
 - 70% of trials lack representativeness of routine clinical practice¹
 - Registry studies: standardized protocols, complete follow-up, but selected populations
 - Biobank studies: comprehensive phenotyping and genomic data, but volunteer only
- Representative Data** (Broad but Biased)
 - Missing or unstructured outcomes, unmeasured confounding threatens causal inference, selection bias from non-randomized treatment assignment
 - E.g., Electronic Health Record (EHR): real-world populations, but missing/unstructured specialized outcomes, coding variability; Claim databases: population-scale, but limited clinical detail, billing-driven
- Current Methodological Challenge**
 - Challenge 1: Missing Critical Outcomes**
 - Specialized measurements unavailable in target populations
 - E.g., neuroimaging in routine care, biomarkers in claims data
 - Challenge 2: Unmeasured Confounding is Everywhere**
 - Either source or target data both suffer from unmeasured confounders in reality
 - Existing transportability methods^{2,3} assume no unmeasured confounding in both populations

Objective:


- To develop the causal machine learning framework that bridges high-quality trial data with incomplete real-world data by generating NCO-calibrated digital twins, enabling valid treatment effect estimation in target populations lacking primary outcomes.

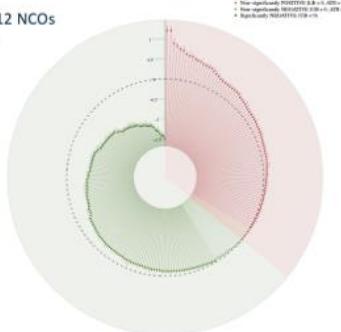
Results: GLP1-RA on Mental Health

- Multi-site EHR Validation: Penn Medicine EHR data, outcomes masked by hospital site
- 21 mental health outcomes, 32 carefully selected NCOs

Method: Framework

	Treatment A	Covariates X	Unmeasured Confounders U	Outcome of interest Y	Negative Control Outcome W _j
Source Data ($D=1$)	✓	✓	X	✓	✓
Target Data ($D=0$)	✓	✓	X	X	X

b. Digital Twins (DT): Individualized counterfactual predictions


- Train Machine Learning (ML) model on source data: $f(X, A) \rightarrow Y$ to learn covariate-outcome relationship, and predict what each person's outcome would be under both (un)exposure at target data
- Negative Control Outcomes (NCOs): Outcomes causally unrelated to treatment but sharing bias structure with primary outcome**
 - Train ML model on source data: $g_j(X, A) \rightarrow W_j$ to capture systematic bias patterns, and generate NCO digital twins at target data for debiasing

Results: SPRINT-MIND Trial → Penn Medicine EHR data

- SPRINT-MIND: Intensive Blood Pressure Control reduces white matter lesions (neuroimaging)
- Penn EHR: No neuroimaging
- 238 White Matter Lesion Volume Outcomes, 212 NCOs
- 62.6% protective effects, 94.5% significant—consistent with original trial conclusion

References:

- [1] Kennedy-Martin, T., Curtis, S., Faries, D., Robinson, S., & Johnston, J. (2015). A literature review on the representativeness of randomized controlled trial samples and implications for the external validity of trial results. *Trials*, 16(1), 495.
- [2] Cole SR, Stuart EA. Generalizing evidence from randomized clinical trials to target populations: The ACTG 320 trial. *Am J Epidemiol*. 2010;172(1):107–115.
- [3] Dahabreh IJ, Robertson SE, Steingrimsson JA. Learning about treatment effects in a new target population under transportability assumptions for relative effect measures. *Eur J Epidemiol*. 2024;39(9):957.

#OHDSISocialShowcase This Week

Thursday

Toward Accurate Identification of Fontan and TGA in OMOP CDM: Registry-Anchored Algorithm Validation

(Seohu Lee, Suhyun Kim, Haeun Lee, Jong M Ko, Woo Young Park, Kwangsoo Kim, Sang Yun Lee, Ari Cedars)

Toward Accurate Identification of Fontan and TGA in OMOP CDM Registry-Anchored Algorithm Validation

✉ PRESENTER: **Seohu Lee**

INTRO:

- Why it matters: Adult Congenital Heart Disease (ACHD) is rare and complex, requiring multicenter data to achieve adequate sample size and enhance generalizability of findings.
- Problem: Existing CDM-based algorithms often fail to capture surgically repaired ACHD patients (Fontan, D-TGA) because procedures performed in early childhood are frequently absent or incompletely carried over into adult EHR/CDM records.
- Aim: Refine OMOP CDM algorithms for surgical ACHD phenotypes and validate them against registry and billing data.

METHODS

- a. Data Sources
 - Internal validation: JHH OMOP CDM (2.3M patients, 2016-2024)
 - External validation: SNUH OMOP CDM (3.8M patients, 2004-2024) linked to Korean claims and registry
- b. ACHD Subtypes Defined
 - Fontan circulation
 - D-TGA with arterial switch
 - D-TGA with atrial switch
- c. Algorithm Design
 1. Define algorithms using condition + procedure codes with explicit exclusions
 2. Extract patient-level cohorts
 3. Link to claims/registry for gold standard validation
 4. Phenotype algorithms were developed and Implemented in SQL using OHDSI libraries
- d. Validation
 - Gold standards = Korean insurance claims + Korean fontan registry
 - Metrics: Precision, Recall, F1-score

CDM-based phenotyping works, but we must go beyond structured data to capture surgical history

Table 1. Fontan and D-TGA Phenotype Definitions

Subtype	Phenotype Criteria	OMOP Concept IDs
	Procedure occurrences of 'Fontan' *OR*	2107268, 2107269, 2107270
Fontan	Procedure occurrences of 'Glenn' *NOT*	2107355, 4051948, 2107356, 40491942
	Condition occurrences of 'Ebstein's anomaly' *NOT*	35210812, 4069182
D-TGA (Arterial Switch)	Condition occurrences of 'Discordant ventriculoarterial connection' *AND*	432431, 35210794
	Procedure occurrences of 'Repair of TGA (anatomic / arterial switch)'	2107375, 2107377
D-TGA (Atrial Switch)	Condition occurrences of 'Discordant ventriculoarterial connection' *AND*	432431, 35210794
	Procedure occurrences of 'Repair of TGA (non-anatomic / atrial switch)'	2107361, 2107356, 40491942

Table 2. Patient Counts for Fontan and D-TGA Phenotypes at JHH and SNUH

Subtype	JHH (All)	JHH (Age \geq 18)	SNUH (All)	SNUH (Age \geq 18)
Fontan	135	2	297	29
D-TGA with Arterial Switch	77	10	126	0
D-TGA with Atrial Switch	35	1	134	0

Table 3. Performance Metrics for Fontan and D-TGA (Atrial Switch) in Claims and Registry Data at SNUH

Data Source	Subtype	Precision (%)	Recall (%)	F1-score (%)
Claims	Fontan	81.8	72.8	77.0
	D-TGA	95.5	37.3	53.8
Registry	Fontan	62.6	44.8	52.3
	D-TGA	62.7	30.4	41

Take a picture to download the full paper

Key Takeaways

- Clinical impact: Incomplete surgical history leads to under-identification of ACHD adults, limiting multicenter studies.
- Adult cases are rare in CDM: Most cases were pediatric, reflecting difficulty tracing childhood surgeries into adult records.
- Structured data is insufficient: Missing childhood surgical records and vocabulary gaps both reduce phenotyping accuracy.
- Cross-institution feasibility proven: JHH and SNUH algorithms scale but need multimodal inputs (echo, clinical notes).

Future Directions

- Integrate multimodal data: Expand phenotyping by incorporating echocardiography reports and narrative clinical notes, using LLM-based pipelines.
- Enhance external validation: Benchmark via the Alliance for Adult Research in Congenital Cardiology (AARCC) and international ACHD networks

✉ Seohu Lee, Suhyun Kim, Haeun Lee, Jong M Ko, Woo Young Park, Kwangsoo Kim, Sang Yun Lee, Ari Cedars

SNUH

Friday

DarwinBenchmark: Evaluating cohort generation and analytics in OMOP CDM databases

(Ioanna Nika, Maxim Moniat, Guido
van Leeuwen, Ross Williams)

#OHDSISocialShowcase This Week

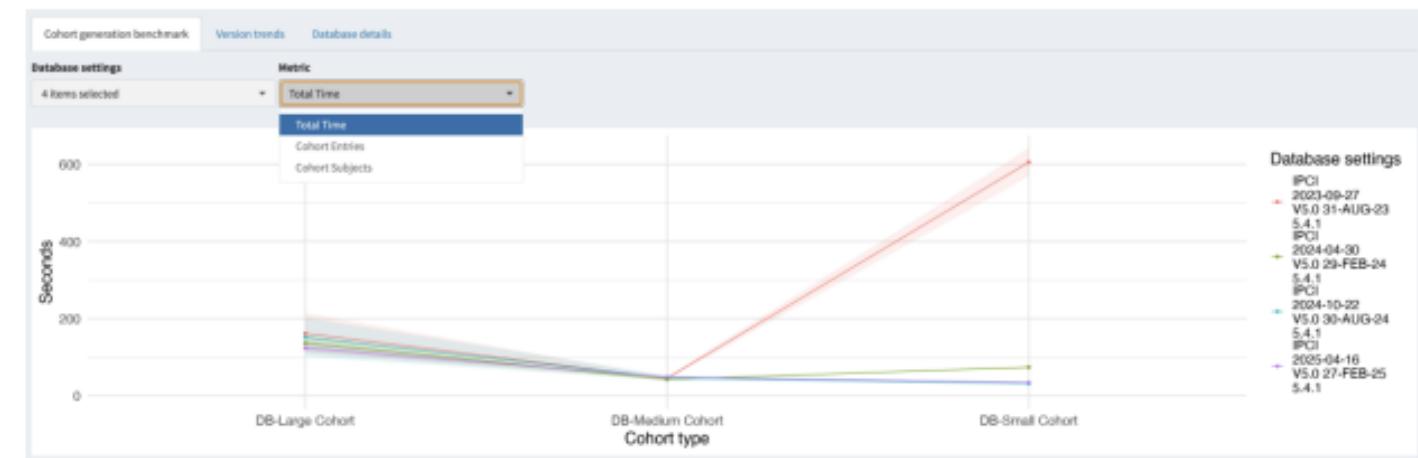
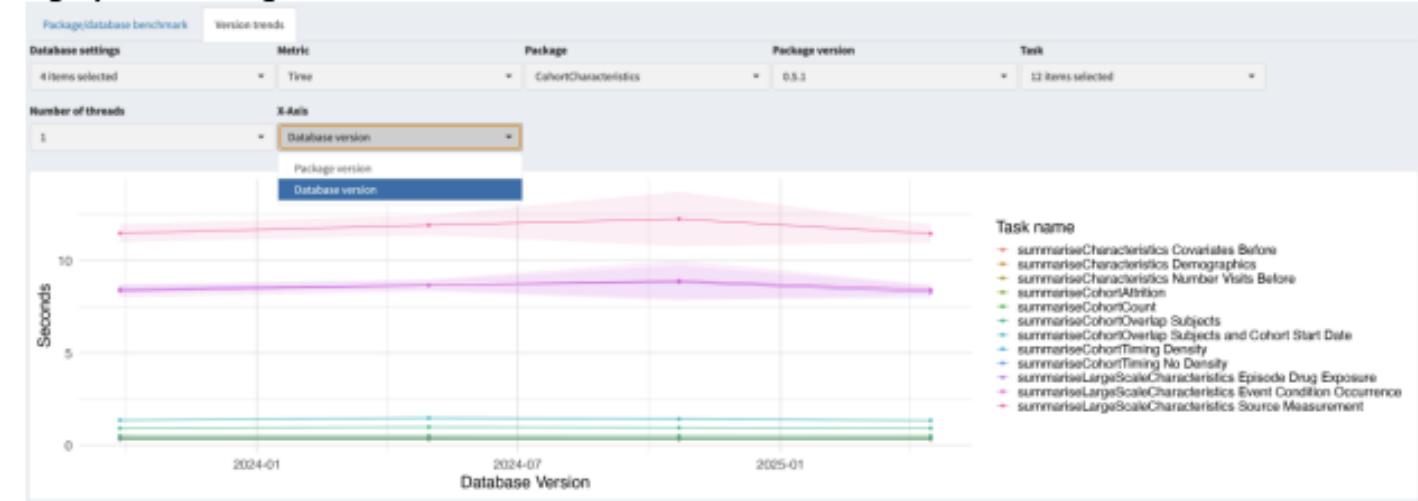



Figure 2. User interface for the Cohort Generation Benchmark. Despite larger data volumes, recent releases generate the most constrained cohort faster. Runtimes for other cohorts remain consistent across versions. The largest cohort requires slightly more time to generate.

Where Are We Going?

Any other announcements
of upcoming work, events,
deadlines, etc?

Three Stages of The Journey

Where Have We Been?

Where Are We Now?

Where Are We Going?

**The weekly OHDSI community call is held
every Tuesday at 11 am ET.**

Everybody is invited!

**Links are sent out weekly and available at:
ohdsi.org/community-calls-2025**